Statistic   통계량, 통계변수

(2023-10-05)

Representative Value, 대표값


1. 통계량(統計量) 이란?

  ㅇ 단 하나의 수로, 대상이되는 자료 집단(확률 모델) 특성을 잘 설명할 수 있는 값/변수/특성량
     - 흔히 `대표값`, `확률변수` 라고도 함
        . 例) 평균, 중앙값, 최빈값, 표준편차, 왜도, 첨도 등

  ㅇ 주로, 모집단 통계량 보다는 표본 통계량을, 그냥 통계량이라고 지칭할 때가 많음
     - 통상, 모집단 통계량은, 미지의 `상수`로 취급되나,       ☞ 아래 3.항 참조
     - 표본 통계량은, 표본때 마다 달라지므로 `확률변수`로 취급됨
     - 표본(모집단의 일부)의 함수

  ※ 한편, 확률분포의 특성을 요약하는 값으로써, 
     - (평균,표준편차,왜도,첨도 등)을 사용하는데, 
     - 이들 특성 값들은 수학기댓값을 이용하여 구할 수 있음   ☞ 적률 참조


2. 특성별 통계

  ㅇ (중심)  자료의 중심/집중경향(Central Tendency)을 나타내는 통계량
     - 평균(Mean)             : 표본자료의 중심무게
     - 중앙값(Median)         : 극단값에 덜 영향받음 
     - 최빈수(Mode)           : 대단위 자료에 유용
       

     * 기대값(Expected Value) : 확률분포의 중심/집중경향을 일반화시킨 개념

  ㅇ (상대적 위치)
     - 분위수(Quantile)       : 자료의 크기 순서에 따른 상대적 위치 파악
     - z 값                   : 자료가 평균에서 상대적으로 얼마나 벗어났는가 파악

  ㅇ (변동/산포)  자료의 변동성/산포정도(Variability)를 나타내는 통계량
     - 범위(Range)            : 최대값최소값 차이
     - 변동(Variation)        : 편차 제곱의 합
     - 분산(Variance)         : 편차 제곱의 합을 데이터 수로 나눈 값
     - 표준편차(Standard Deviation)

  ㅇ (형태)  자료의 분포형태의 왜곡(정규분포로부터 벗어남) 정도를 나타내는 통계량
     - 왜도(Skewness)         : 치우침 정도
     - 첨도(Kurtosis)         : 뾰족함 정도


3. 사용분야별 통계모집단 통계량 = 모수 (Population Parameter)              => 미지의 `상수` 취급
     - 모집단 자료에서 계산되는 통계량 (대부분 알려지지 않음)
        . 모수 例) 모 평균 μ, 모 분산 σ2, 모 비율 p 등

  ㅇ 표본 통계량 (Sample Statistic)                           => `변수(변량)` 취급
     - 모집단에서 추출한/관측된 표본에 담겨있는 통계적 특성치
        . 모수추정하기 위해, 관측된 랜덤 표본들로부터 계산되는 값
     - 그냥 `통계량` 이라고 할 때는 표본 통계량을 가리킴
        . 표본 통계량 例 : 표본 평균 X-, 표본 분산 S2, 표본 비율 p^, 표본 적률 등

     - 표본을 어떻게 선택하는가에 따라 달라질 수 있기 때문에 이 또한 확률변수임
        . 무작위 표본 X1,X2,...,Xn함수가 되므로,
        . 모든 통계량은 또한 랜덤변수이고, 확률적 분포(☞ 표본 분포)를 갖음

  ㅇ 검정 통계량 (Test Statistic)                              => `변수(변량)` 취급
     - 통계적 가설검정할 목적으로 사용되는(근거가 되는) 표본 통계량
        . 검정 통계량 例) 표본 평균, 표본 분산 또는 t 값, z 값, F 값 등

  ㅇ 추정 통계량 = 추정량 (Estimate)                           => `변수(변량)` 취급
     - 여러 표본 통계량 중에 미지의 모수를 가장 잘 추정하는 량(量)
        . 추정량 例) 모 평균에 대해 표본 평균은 좋은/바람직한 추정량으로 간주됨

     * [참고] 바람직한 추정량 조건
        . 불편성 (unbiasedness)
        . 일치성 (consistency)
        . 유효성 (relative efficiency)
        . 충분성 (sufficiency)

[통계량 ⇩]1. 통계량   2. 모멘트 (원점적률, 중심적률)   3. 적률생성함수   4. 비율  

[모집단,표본 ⇩]1. 모집단   2. 모수   3. 표본   4. 통계량  

  1. Top (분류 펼침)      :     1,591개 분류    6,513건 해설

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력 (금일 1건)