IIR   Infinite Impulse Response, IIR Filter   IIR 필터, 무한 임펄스 응답 필터, IIR 시스템

(2022-04-04)

1. IIR 필터 (Infinite Impulse Response Filter, 무한 임펄스 응답 필터)디지털 필터 구분 중 하나

  ㅇ 표현식 
      
[# y[n] = \sum^{\infty}_{k=-\infty} h[k] x[n-k] #]
- 입력 신호 샘플에 무한 길이 계수의 곱셈과 이를 더한 합으로 표현됨 * (임펄스응답에 의한 컨볼루션 합 표현식) 2. IIR 필터의 특징 ㅇ 무한 길이 (infinite length) - 임펄스응답 h[k]가, 무한한 길이(-∞ < k < ∞)를 갖음 ㅇ 컨벌루션 합(Convolution Summation)으로 구현 불가능 - FIR시스템과는 달리, 컨벌루션 합으로 구현이 불가능 - 왜냐하면, 무한 개의 덧셈기,곱셈기,기억소자가 필요하기 때문 ㅇ 순환적(Recursive) 구조로 만 표현 가능 - 이전 출력 다시 이용 . 현재의 출력을 계산하기 위해, 현재 입력 뿐만 아니라 이미 출력된 신호가 다시 이용됨 - 소자 수 줄임 . 계산식 자체를 볼 때는, 많은 소자를 요구하는 듯하나, . 만일 순환적 구조(순환 필터)로 표현하면, 간단히 구현 가능 - 연산량 줄임 . 연산량을 FIR 시스템에 비해 크게 줄일 수 있음 - 대표적 例) 누적 필터(accumulation filter) . y[n] = x[n] + y[n-1] ㅇ 불안정 가능성 있음 - 전달함수 극점(Pole) 선택이 잘못되면 불안정할 수 있음 ㅇ 아날로그 필터 설계 기법 활용 - 먼저, 아날로그 필터설계해 보고, - s 영역에서 z 영역으로의 변환을 통해, - 디지털 IIR 필터로 전환 함 3. IIR 필터의 표현임펄스응답 표현 - 임펄스응답의 길이가 무한이므로, 구현이 불가하여, * 굳이 이러한 표현식을 실용상 거의 사용 안함 ㅇ 차분방정식 표현
[# y[n] = \sum^M_{k=0} b_k x[n-k] + \sum^N_{l=1} a_l y[n-l] #]
- b : 피드포워드 계수, a : 피드백 계수 - 차분방정식 표현에 필요한 계수의 수 : M + N + 1 - 필터 차수 : N (피드백되는 최고차 지연 항의 차수) - 만일, 피드백 계수 a가 모두 0 이라면, 이는 FIR 필터동등함 ㅇ 전달함수 표현
[# H(z) = \frac{N(z)}{D(z)} = \frac{\sum^M_{k=0} b_k z^{-k}}{1 - \sum^N_{i=1} a_l z^{-l}} #]
- 다항식들의 비(比)유리 함수로 표현됨 4. IIR 필터차수 ㅇ IIR 1차 필터 - 이전 출력 샘플 중 오직 하나 y[n-1] 만이 피드백 됨 - 例) y[n] = (b0x[n] + b1x[n-1]) + (a1y[n-1]) ㅇ IIR 2차 필터 - 공진 현상을 모델링 하는데에 쓰임 - 例) y[n] = (b0x[n] + b1x[n-1]) + (b2x[n-2] + a1y[n-1] + a2y[n-2]) 5. IIR 필터의 구현 구조 ㅇ 직접형 (Direct form) - 주어진 차분방정식 형태 그대로, 기본 소자를 이용하여 구현 . 제 1 직접형 : 차분방정식을 주어진 그대로 구현하는 것 . 제 2 직접형 : 제1직접형에서 입력부,출력부를 맞바꿔, 시간 지연기 수를 반으로 줄인 것 . 전치 제 2 직접형 : 제1직접형을 시간지연기와 계수 곱셈 순서를 바꾼 후, 시간지연기를 열로써 묶은 것 ㅇ 종속형 (Cascade form) - 전달함수인수분해하여 여러 인수들의 곱 종속으로 구현 ㅇ 병렬형 (Parallel form) - 전달함수인수분해하고 부분분수 전개하여 병렬로 구현 ※ [참고] ☞ 이산시스템 구현 구조 참조



"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"