Partial-fraction Expansion   부분분수 전개

(2022-09-08)

1. 부분분수 전개 (Partial-fraction Expansion)

  ㅇ 통상, 시스템함수 또는 전달함수는, s의 다항식유리함수로 표현된, 복잡한 함수 형태임
  ㅇ 따라서, 복잡한 함수의 라플라스 역변환을 보다 쉽게 구하기 위해,
  ㅇ 라플라스 역변환을 이미 알고있는, 간단한 부분분수 항들의 합으로 나타내는 것

  ※ 헤비사이드 부분분수 분해 (Heaviside Cover-up Method)
     - 복잡한 형태의 분수식을 2 이상의 분수식으로 쪼개는 기법으로,
     - 쪼개진 각 부분분수 항의 계수를 간편하게 구할 수 있음
     * Oliver Heaviside (1850~1925) : 영국 전기기술자,물리학자 등 독학자


2. 부분분수 전개의 종류함수 F(s)의 분모 다항식이, 서로 다른 실근(단순 실근)을 갖는 경우 (distinct)
     함수 F(s)의 분모 다항식이, 실수인 중근을 포함하는 경우 (equal,multiple)
     함수 F(s)의 분모 다항식이, 복소수 근이나 순 허근을 갖는 경우 (complex conjugate)
     

라플라스 변환
   1. 라플라스 변환   2. 복소 주파수   3. 라플라스 변환쌍   4. 라플라스 변환 성질   5. 라플라스 변환 가능   6. 부분분수 전개  


Copyrightⓒ written by 차재복 (Cha Jae Bok)       기술용어해설소액후원
"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"