Matrix   행렬

(2024-08-11)

메트릭스, 매트릭스


1. 행렬 (Matrix)

  ㅇ 수, 문자, 함수 등을 네모꼴 괄호 안에 배치하여 놓은 것
     - 각각의 수 또는 함수 등을 원소/성분/요소(element,component)로 갖음

  ※ [참고] ☞ 배열 행렬 비교 참조
     - (같은 방식으로 저장되나, 연산 방법은 다름. 특히, 곱셈,나눗셈,거듭제곱 등에서)


2. 행렬의 역사행렬식(Determinant)이라는 용어를 최초 소개 : Gauss 
  ㅇ 현대적 의미로 사용 : Cauchy (1812)
  ㅇ 보편적인 행렬(Matrix) 용어 및 표기법 사용 : J.J. Sylvester (1851)
  ㅇ 행렬의 성질을 폭넓게 연구 : Arther Cayley (1821~1895)
  ㅇ 행렬 이론에 기여 : Charles Hermite, Georg Frobenium, Camille Jordan 등


3. 행렬의 용도

  ㅇ 정적인 사용
     - 정보를 표로써 정형화시켜, 저장하고 처리하는데 사용됨. 例) 엑셀 프로그램 등  
     - 연립 선형방정식의 표기를 간소화시킴
     - 시각적 이미지 및 디지털 음을 전송하는 수학적 처리에 사용됨

  ㅇ 동적인 사용
     - 연립 방정식 및 그 들에 대한, 간단한 수식화 표현 및 풀이 도구
     - 선형 대수 방정식,선형 미분방정식,비선형 미분방정식의 풀이 및 해의 분석에 기초가 됨
        . 수많은 미지수를 갖는 선형 연립방정식을 테이블 형식을 이용, 해를 구하는 수학적 도구
           .. 연립 선형 방정식을 동시에 만족시키는 근(해)을 구할 때 유용함

  ※ 특히, 수학적 공간 간의 변환/매핑에 활용 됨
     - 벡터를 다른 벡터로 변환/변형/작용시키는 어떤 함수로서의 역할을 갖는 행렬 
        . 즉, 행렬은 선형성이라는 성질을 갖는 특수한 함수 임   ☞ 선형변환, 행렬변환 참조


4. 행렬의 표기
  
  ㅇ 행렬의 표기
     - 대문자   : A, B, C 또는 A, B, C  등
     - 표기형식 : 크기 (m x n)를 갖는 행렬 A는 다음과 같이 표기
         

  ㅇ 행렬의 성분 표기 
     - 주로, 소문자 : aij (행렬 A에서 i 행,j 열에 있는 성분)

  ㅇ 행렬 내 특정 행,열 표기
     - i번째 행 : {# A_i = (a_{i1},a_{i2},\cdots,a_{in}) #}
     - j번째 열 : 
[# A^j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \cdots \\ a_{mj} \end{bmatrix} #]
※ 특히, 행수 및 열수가 같은 (n x n) 행렬을 정방행렬이라 하고, - 이때 n을 `차수(order)`라고 함 - 원소 a11,a22,...,ann을 포함하는 대각선을 `주대각선(principal diagonal)`이라함 5. 행렬의 용어 ※ [참고] ☞ 행렬 용어 참조 - 행렬의 크기 (magnitude), 행렬의 상등 (equal,equivalent), 행렬의 차수 (order), 주 대각선(main diagonal), 대각합 (Trace), 행렬의 계수(Rank) 등 6. 행렬로써의 벡터 (Vector) ㅇ 1개의 행 또는 열 만의 행렬을 말함 ☞ 행 벡터, 열 벡터 참조 - 행 벡터 (1행으로만 된 1 x n 행렬) : {# \mathbf{a} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} #} - 열 벡터 (1열으로만 된 m x 1 행렬) :
[# \mathbf{b} = \begin{bmatrix} b_{11} \\ b_{21} \\ \cdots \\ b_{n1} \end{bmatrix} #]
7. 행렬 관련 기타참고사항 ㅇ 행렬의 종류 ☞ 행렬 종류 참조 - 정방행렬,대각행렬,삼각행렬,단위행렬,대칭행렬,계수행렬,전치행렬 등 ㅇ 행렬 간의 연산행렬 연산 참조 - 행렬의 덧셈,뺄셈,곱셈 연산은 성립 ☞ 행렬덧셈, 행렬곱셈 참조 - 행렬 곱셈에서, . 결합법칙,분배법칙은 성립하나, . 교환법칙은 성립하지 않음 : A B ≠ B A

[행렬]1. 행렬 이란?   2. 행렬 용어   3. 가역행렬 정리  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력 (금일 2건)
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설