Chi-square Test, Chi-Squared Text, χ² Test   카이제곱 검정, χ² 검정

(2024-02-03)

1. 카이제곱 검정 (χ² 검정)

  ㅇ 카이제곱 검정의 적용상의 특징
     - 대표적인 비모수 검정 임
     - 적용 범위가 광범위하고, 응용기법도 다양함
     - 원래 데이터가 없어도, 집계표(통계분할표) 만 있어도 검정이 가능
     - 주로, 사건(범주) 간의 인과관계가, 독립인지 종속인지를 검정
        . 例) 학력 수준과 선호하는 주거양식 간의 관계 등

  ㅇ 주로, 범주형 자료에 대해, 다음 2가지 통계 검정 기법에 자주 쓰임
     - 독립성 검정  :  범주들 간에 상호 독립성 여부를 검정 
     - 적합도 검정  :  추정확률분포가 관측된 분포와 같은지 여부를 검정 

  ㅇ 여기서, 카이제곱 독립성 검정 이란?
     - 성별,혈액형,보수/진보 처럼 어떤 속성,범주에 따라 분류된 변수들이,      ☞ 범주형자료 참조
     - 서로 관련이 있는지 여부(독립성 유무)를 주로 판단하는,
     - 즉, 독립성 검정을 하기 위한 가설검정

  ㅇ 한편, 모집단분산에 대해, 주로 사용하는 검정 방법들의 例로는,
     - 단일 모집단분산에 대한 검정은,  =>  χ² 검정을 이용
     - 두 모집단 분산 간의 비율에 대한 검정은,  =>  분산 분석에 쓰이는 F 검정을 이용


2. 카이제곱 검정 (독립성 검정) 시 가설의 설정귀무가설  :  변량(항목,범주) 간에 관계가 `독립적` 이라고 가정함
  ㅇ 대립가설  :  변량(항목,범주) 간에 관계가 `의존적` 이라고 가정함


3. 카이제곱 검정 (독립성 검정) 시 검정 통계량

  ㅇ 어떤 속성,범주에 따라 분류된 변수들이,
     - 서로 관련이 있는지 여부(독립성/의존성 유무)를 주로 판단하기 위한 통계량

  ㅇ 카이제곱 검정 통계량 또는 피어슨 통계량 (χ²)
      
[# χ^2 = \sum^k_{i=1} \frac{(o_i - e_i)^2}{e_i} #]
- k : 범주의 수, (k-1)의 자유도 - o : 범주 i의 실제 관측 도수 치 - e : 귀무가설이 옳다는 전제하에 기대되는 범주 i의 기대 빈도 수 ㅇ 위 식으로 정의된 표본 통계량확률분포가 `카이제곱 분포`를 따름

[비모수 통계]1. 비 모수 통계   2. χ² 검정  

[검정 유형]1. 검정 유형   2. 유의성 검정   3. 독립성 검정   4. 적합도 검정   5. 정규성 검정   6. t 검정   7. z 검정   8. χ² 검정  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설