Finite Element Method   유한 요소법

(2023-08-24)

1. 유한요소법 (Finite Element Method)공간 관점의 이산적 수치해법
     - 연속체라는 복잡한 형상을, 
     - 유한요소라는 작고 간단한 기하 형상의 집합으로 이산화시켜서,
     - 근사화된 대수 방정식을 풀도록 하여,
     - 이를통해 수치적(근사적)으로 해석 및 원하는 를 얻음

  ㅇ 응용 
     - 구조 해석
        . 외력 인가시, 구조물강성,응력 분포,변형량 등을 근사 수치계산에 의해 해석하는 것
     - 유체유동, 열전달, 전자기장의 해석


2. 유한요소법의 풀이 방식기하학적 형상, 하중, 재료성질 들이, 모두 복잡하게 관여되어,
     - 단순한 해석적 해를 얻기가 어려워지는 경우에,
     - 이를 공간적으로, 작은 유한 요소들로 나눠, 
     - 각각의 요소 방정식을 세우고 조합하여, 
     - 이를통해 얻어진, 전체 연립 대수 방정식(주로,연립미분방정식)의 해를,
     - 컴퓨터에 의한 근사적 풀이 도모


3. 유한요소법의 필요 사항구조체 분할, 요소 분할 (Discretization)
     - 유한요소법 적용시, 고려되는 최초 기본 과정
     - 고려사항 : 요소의 종류, 형상, 요소 수, 절점의 위치 등
     - 특징 : 분할 수가 많을수록 해의 정확도가 높아지나 계산량이 많아짐 (상충관계)

  ㅇ 요소 형태
     - 유용한 결과를 얻기 위해, 충분히 작아야 함 (기하학적 형상이 변하는 곳 위주)
     - 계산을 줄이기 위해, 충분히 커야 함 (결과값이 상대적으로 일정한 곳 위주)

  ㅇ 단계별 적용과정
     - 격자 분할과 요소 형태의 선정
     - 변위 함수의 선정
     - 변형률 - 변위응력 - 변형률 관계의 정의
     - 요소 강성 행렬방정식의 유도

[수치해법 ⇩]1. 수치 해석   2. 천장,마루 함수   3. R 언어   4. 유한요소법  

  1. Top (분류 펼침)      :     1,591개 분류    6,514건 해설

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력