Point Estimate, Point Estimation   점 추정

(2022-02-20)

1. 점 추정 (Point Estimation)모집단모수를 하나의 값으로 추정하는 과정


2. 점 추정량, 점 추정치추정량 참조

  ㅇ 점 추정량 (Point Estimator)
     - 미지의 모수를 가장 잘 추정하는 표본통계량 (표본평균,표본분산,표본비율 등)
        . 표본통계량모수추정하기에 가장 적절한 것을 골라서 그 값을 모수로 취하려고 함

  ㅇ 점 추정치 (Point Estimate/Point Estimated Value)
     - 추정량에서 결정되는 특정한 값


3. 좋은 추정량이기 위한 조건

  ※ ☞ 점 추정량 선택기준 참조
     - 종류 : 불편성, 충분성, 효율성, 유효성, 일치성 등

  ※ 例) 모 평균추정에는,
     - 표본 평균,표본 중앙값,표본 최빈값 등을 사용할 수 있으나,
        . 이 중에 표본 평균이 가장 좋은 추정량 임
     - 즉, 표본 평균은, 불편성,일치성,유효성이라는 바람직한 통계적 성질들을 모두 갖음


4. 좋은 추정값을 얻기 위한 방법추정의 정확성에 대한 질적인 평가 척도
     - 평균제곱오차(MSE), 제곱근평균제곱오차(RMSE), 우도(Likelihood) 등

  ㅇ 좋은 추정량을 구하는 법                                 ☞ 추정법 참조
     - 미지의 모수에 대해 좋은 추정량/추정값을 구하는 일반적인 방법으로써,
        . 대부분, 실제 모수추정량과의 차이를 작게 가져가기 위해,
        . 평균제곱오차, 추정량의 분산 등을 최소화시키는 등의 여러 방법이 가능함
     - 例)  
        . `최소 제곱법(LSM)` 또는 `선형 회귀분석` 또는 `최소 평균제곱오차(MMSE)`
        . `최대 우도 추정법` 또는 `ML 규칙`
        . 적률 방법 
        . 베이즈 추정법 등

[점추정]1. 점 추정   2. 좋은 점 추정량  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설