Neural Network   신경망

(2024-10-22)

Artificial Neural Network, 인공 신경망, 인공 신경 회로망


1. 생체 신경망 (Biological Neural Network)

  ㅇ 구조
     - 1천억개(1O11개)의 신경 세포뉴런들이 있고,
        . (뉴런 (Neuron) : 정보 처리에 관여하는 기본 세포)
     - 이들 간을 연결하는 시냅스들로 구성된 결합체
        . (시냅스 (Synapse) : 각 뉴런 간을 연결하는 수천만개의 연결부위)

  ㅇ  기능
     - 시냅스로 연결된, 적응적,병렬적 특성을 갖는, 신경 회로망을 통해,
     - 감각,기억,판단,운동 기능을 일으키며, 조화롭게 발현됨

  ㅇ 특징 
     - 병렬 처리, 학습과 적응, 비선형2. 인공 신경망 (Artificial Neural Network, ANN)인간 구조에 착안,모방하여 만든 기계학습법의 일종
     - 적응적 학습병렬 처리 등이 가능함


3. 인공 신경망의 특징학습이 가능함
     - 훈련 데이터 집합주면, 연결 강도를 자동 추정하며, 인공 신경망이 만들어짐

  ㅇ 적응적 학습
     - 신경 세포 구조를 적응적으로 변화시키는 것에 의해 학습 함
        . 잘못된 답으로 이끄는 뉴런들 사이의 연결은 약화되고,
        . 올바른 답으로 이끄는 연결은 강화됨

     * 시냅스 가소성 (Synaptic Plasticity) 
        . 시냅스를 통해 신경 전달 물질이 많이 전달되면, 관계 강화됨
        . 그 역이면, 관계 약화됨                                                 

  ㅇ 병렬 정보 처리
     - 정보가 신경망 특정 위치가 아니라 신경망 전체에 동시에 저장되고 처리됨
        . 통상, 노드의 출력이 연결 강도와 곱하여, 계산이 이루어지므로,
        . 각각 독립적으로 계산 처리되면서, 병렬 처리 가능

  ㅇ 인공 신경망(ANN)은 딥러닝의 핵심
     - 다재다능하고, 강력하며, 확장성이 뛰어남


4. 인공 신경망의 주요 모델생물학뉴런의 기능을 수학적으로 모델링한 것

  ㅇ 퍼셉트론 (Perceptron)
     - 선형 분류기의 일종
     - 2개의 층 만을 갖음 (입력층, 출력층)
     - 구성요소  :  입력값, 가중치, 바이어스, 가중치합, 활성화 함수 
     - 매개변수  :  가중치(weight), 편향(bias)

  ㅇ 다층 퍼셉트론 (MLP, Multi Layer Perceptron)
     - 비선형 분류기의 일종
     - 입력 층, 은닉 층 (하나 이상), 출력 층
     - 다층 퍼셉트론은, 딥러닝의 기본적인 구성 요소로, CNN, RNN 등의 심층 신경망의 기초가 됨


5. 인공 신경망의 학습 방식

  ㅇ 가중 링크 (Weighted Link)
     - 뉴런들 간에 링크로 연결되어 있고, 
     - 그에 연관된 수치 가중치가 있어서,
     - 가중치들을 반복적으로 조정하며 학습이 이루어짐

  ㅇ 즉, 가중치 조정으로 프로그램될 수 있는 학습능력을 갖는다고 볼 수 있음


6. 인공 신경망의 응용분류,예측,평가,합성,제어 등 다양한 분야에 적용 가능함
     - 즉, 일반적인 문제 해결을 위한 수학적 도구로써 주로 활용됨
 
  ㅇ 例) 이미지 분류, 음성 인식, 동영상 추천, 바둑 경기 등


7. 인공 신경망의 종류 

  ㅇ DNN (Deep Neural Network, 심층 신경망)
  ㅇ CNN (Convolutional Neural Network, 합성곱 신경망)
     - 컴퓨팅 성능의 향상, 훈련 데이터의 증가, 심층 신경망 훈련에 대한 다양한 기법 덕분에,
       복잡한 시각 작업에서 CNN은 인간을 능가하게 됨
     - 응용 例) 검색 서비스, 자율 주행차, 자동 비디오 분류 시스템 등
  ㅇ RNN (Recurrent Neural Network, 순환 신경망)

신경망, 딥러닝
1. 인공 신경망 (ANN)   2. 퍼셉트론, 다층 퍼셉트론   3. 딥러닝   4. 활성화 함수   5. 역전파   6. 신경망 딥러닝 용어   7. 신경망 딥러닝 파라미터  

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 ( 차재복, 건강 문제로 휴식중 )
[신경망, 딥러닝]1. 인공 신경망 (ANN)   2. 퍼셉트론, 다층 퍼셉트론   3. 딥러닝   4. 활성화 함수   5. 역전파   6. 신경망 딥러닝 용어   7. 신경망 딥러닝 파라미터  

  1. Top (분류 펼침)      :     1,604개 분류    6,618건 해설