확률 정리, 확률 법칙, 연습

(2023-11-01)

확률의 가법 정리, 확률의 덧셈 정리, 확률의 승법 정리, 확률의 곱셈 정리


1. 확률 정리/법칙확률의 가법 정리(덧셈 정리) (Addition Theorem of Probability)
     - 상호배반적일 때, (즉,동시에 일어나지 않음, A∩B=∅)
        .  P(A∪B) = P(A) + P(B)
           .. 상호배반인 사상 A,B 중 적어도 하나가 일어날 확률은, 확률들의 합과 같음

  ㅇ 확률의 승법 정리(곱셈 정리) (Multiplication Theorem of Probability)
     * 두 사건 A,B 모두 만족하는 A∩B가 일어날 (즉,동시에/함께 일어날) 확률은,
        .  한쪽 확률조건부확률 또는 다른쪽 확률을 곱한 것과 같음
     - 상호종속적일 때, (즉, 서로간에 상관성 있을 때)
        .  P(A∩B) = P(A|B) P(B)  또는  P(B|A) P(A)
           .. 한쪽 확률조건부확률을 곱한 것과 같음
     - 상호독립적일 때, (즉, 서로간에 상관성 없을 때, P(A|B) = P(A), P(B|A) = P(A))
        .  P(A∩B) = P(A) P(B)
           .. 한쪽 확률에 다른쪽 확률을 곱한 것과 같음
     * 한편, A,B가 동시에 일어나는 확률 P(A∩B)를 `동시 확률(결합 확률)` 이라고도 함

  ㅇ 독립시행의 정리                ☞ 베르누이 시행 참조
     - P(A1∩A2∩...∩An) = P(A1)∩P(A2)∩...∩P(An)

  ㅇ 대수의 법칙 (Law of Large Numbers)
     - `확률수렴`에 관한 정리 중 하나
         . 시행이 많아질수록, `통계적 확률`은 `수학적 확률`에 가까워짐

  ㅇ 중심 극한 정리 (Central Limit Theorem)
     - `확률수렴`에 관한 정리 중 하나
        . 표본 평균확률분포(표본분포)는 정규분포수렴전체 확률 법칙 (Law of Total Probability)
     - 한 실험이 연속된 하위 실험들로 구성될 때(사건 Ai들이 표본공간을 분할) 유용한 법칙
        . 
[#P(B) = \sum^n_{i=1} P(B \cap A_i) = \sum^n_{i=1} P(A_i)P(B|A_i)#]
- 조건부 확률로부터 조건 없는 확률을 계산할 때 쓰임 (베이즈 정리)

[확률 정리/법칙]1. 확률 정리/법칙   2. 대수의 법칙   3. 전체 확률 법칙   4. 중심극한의 정리   5. 체비셰프 부등식  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설