Method of Lagrange Multipliers   라그랑주 승수법

(2023-08-22)

라그랑제 승수법


1. 라그랑주 승수법

  ㅇ 1 이상의 제약조건 하에서, 여러 변수를 갖는 함수극값(최대값,최소값)을 구하는 문제
     - 제약 조건(연립 방정식) 하에 최대 최소값을 찾는 문제
     - 특정 조건에 구속된 다 변수 함수극값(즉,조건부 극값)을 구하는 방법

  ㅇ 원래 문제가 복잡할 때, 이를 풀기 쉬운 형태로 변형하여 푸는 방식


2. 라그랑주 승수법 요약

  ㅇ (최적화 문제)
     - g(x, y)=0 이라는 제약조건를 갖는,
     - z=f(x, y) 에서,
     - 이를 최대 또는 최소로 하는 x, y의 값(극점)을 구하기 위해,

  ㅇ (라그랑주 조건)
     - f,g가 모두 미분가능하면, 극점에서 두 함수기울기 벡터는 서로 나란해야 함

  ㅇ (라그랑주 승수)
     - 라그랑주 승수 λ를 도입하여,

  ㅇ (풀이 방식)
     - w(x, y) = f(x, y)+λg(x, y) 라는 함수 w(x, y)를 생각하고,
     - ∂w/∂x = 0, ∂w/∂y = 0, g(x, y) = 0 이라는 세 식으로부터,
     - x, y, λ를 구함

[최적화]1. 최적 문제   2. 최적화 문제 구분   3. 최적화 문제 용어   4. 최적화 문제 표현   5. 변분법   6. 라그랑주 승수법   7. 비용 함수   8. 선형계획법   9. 최적화 알고리즘   10. 손실 함수  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설