Ring (환), Ring Axiom   환 (Ring), 환 공리

(2020-03-16)

환 [Ring], 환 [수학]

Top > [기술공통]
[기초과학]
[진동/파동]
[전기전자공학]
[방송/멀티미디어/정보이론]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
기초과학 >   1. 과학
[수학]
[물리]
[화학]
[지구,천체 과학]
[생명과학]
[뇌과학]
수학 >   1. 수학
[기초수학]
[집합,논리]
[해석학(미적분 등)]
[대수학]
[확률/통계]
[수치해법]
대수학 >   1. 대수학
[기초대수학]
[정수론(수론)]
[조합론/셈법(Counting)]
[선형 대수학]
[추상대수학]
추상대수학 >   1. 추상 대수학
  2. 대수 구조
[연산]
[군(Group)]
[환(Ring)]
[체(Field)]
환(Ring)  1. 환(Ring)
  2. 환의 종류
  3. 정수 환
  4. 다항식 환

1. 환(環,Ring) 이란?

  ㅇ 어떤 집합 R 및 그 집합 위에 2개의 이항연산(덧셈,곱셈)이 정의되는,
     - 가장 일반적인 대수 구조

  ㅇ 환의 표기 : `( R, +, ∙)` 또는 `< R, +, ∙ >` 또는 `환 R`
     - 곱셈 기호 ·는 생략하는 것이 관례임


2. 환(環)의 공리(Axiom)

  ㅇ 덧셈(+) 연산에 대해  :  ( R, + )는 덧셈에 대한 가환군(아벨군)
     - ①  닫혀있음 (closure)
     - ②  덧셈 항등원(`0`)이 존재 (identity)
        .  a + 0 = 0 + a = a
     - ③  각 성분에 대해 역원이 존재함 (inverse)
        .  a + (-a) = (-a) + a = 0
     - ④  모든 성분에 대해 결합법칙이 성립 (associative)
        .  (a + b) + c = a + (b + c)
     - ⑤  모든 성분에 대해 교환법칙이 성립 (commutative)
        .  a + b = b + a

  ㅇ 곱셈(·) 연산에 대해  :  ( R, · )
     - ⑥  닫혀있음 (closure)
     - ⑦  모든 성분에 대해 결합법칙이 성립 (associative)
        .  (a·b)·c = a·(b·c)
     * (교환법칙,항등원,역원 같은 제약 없음)

  ㅇ 덧셈(+) 및 곱셈(·) 연산에 대해  :  ( R, +, · )
     - ⑧  덧셈에 대한 곱셈 연산분배법칙이 성립 (distributive)
        .  a·(b + c) = a·b + a·c   (좌 분배 법칙)
        .  (a + b)·c = a·c + b·c   (우 분배 법칙)


3. 환, 가환군(아벨군),  비교

  ㅇ 환을 공리와 비교 표현하면,
     - 덧셈에 대해서는 즉, ( R, + )는 가환군이고,
     - 곱셈에 대해서는 즉, ( R, ·)는 결합법칙이 성립하고,
     - 덧셈 및 곱셈에 대해서는, 분배법칙이 성립함
     * 즉, 환은, + 에 대해 가환군, · 에 대해 반군을 이루는 대수 구조 임

  ㅇ 한편, 환은, 가장 일반적인 대수 구조로써, 
     - 특히, 곱셈에서 교환법칙 성립,항등원 존재,역원 존재와 같은 제약을 두지 않음
         . 곱셈의 교환법칙까지 성립한다면, `가환환` 이라고 함
         . 곱셈의 항등원까지 갖으면, `단위원을 갖는 환(단위환)` 이라고 함
         . 이들에 더하여, 곱셈의 역원 존재까지도 포함하면, `` 이라고 함


4. 환의 例 정수 환(Ring of Integer) (Z,+,∙)
     - 정수의 덧셈과 곱셈에 대해 항등원을 갖는 가환환
     - 정수환은 정역이긴 하지만 체는 아님. ∵ 곱셈 역원이 존재 않음.
  ㅇ 유리수 환 (Q,+,∙)
  ㅇ 실수 환 (R,+,∙)
  ㅇ 복소수 환 (C,+,∙)
  ㅇ 짝수집합 환 (2Z,+,∙)
  ㅇ 행렬 환 (Mn(R),+,∙)
  ㅇ 다항식 환(Polynomial Ring) R[x]


5. 환의 종류

  ※ ☞ 환의 종류 참조
     - 2개 이항연산을 갖는 가장 일반적인 대수 구조로써의 환은,
     - 추가적인 조건이 부여됨에 따라, 더 작은 또다른 환의 형태들이 정의됨
        . 가환환,단위환,정역,


[환(Ring)] 1. 환(Ring) 2. 환의 종류 3. 정수 환 4. 다항식 환

    요약목록

Copyrightⓒ written by 차재복 (Cha Jae Bok)     (소액후원)