Spline Interpolation, Piecewise Polynomial Interpolation   스플라인 보간법, 구간별 다항식 보간법

(2020-02-07)

1. 스플라인 보간법 (Spline Interpolation)

  ㅇ 전체 구간을 소구간별로 나눠, 저 차수다항식 조각들로, 매끄러운 함수를 구하는 방법
     - 구간별 다항식 보간법(Piecewise Polynomial Interpolation) 이라고도 함

  ㅇ [용어] 
     - 스플라인 (Spline) : 과거 제도공들이 쓰던 다양한 형태의 매끄러운 곡선용 휨자
     - 스플라인 함수 (Spline Function) : 각 소구간에서 다항식 조각들로 이루어진 근사 함수


2. 소구간 근사 다항식 구분선형 스플라인 (Linear Spline) : 구간적 선형 보간
     
 
  ㅇ 2차 스플라인 (Quadratic Spline)
     

  ㅇ 삼차 스플라인 (Cubic Spline)
     


3. 스플라인 보간법 특징

  ㅇ 국부적으로 급격히 변하는 함수의 거동에 우수한 근사를 제공
  ㅇ 낮은 차수다항식으로 제한됨


4. 스플라인 보간법 조건

  ㅇ n개 데이터점, (n-1)개 소구간, 각 소구간 i, 소구간별 스플라인 함수 si가 주어질 때,
     - 각 소구간에서 보간점이 정의될 수 있어야 함
        . yi = si(xi) (i=0,1,...,m)
     - 각 소구간에서 (n-1)차 연속 미분가능할 것
     - 각 소구간에서 n차 다항식으로 표현 가능

[곡선적합 (근사) ⇩]1. 곡선적합(Curve Fitting)   2. 보간법   3. 선형 보간법   4. 다항식 보간법   5. 스플라인 보간법   6. 최소자승법   7. 회귀분석  

  1. Top (분류 펼침)      :     1,591개 분류    6,514건 해설

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력