rad, sr   Plane Angle, Solid Angle, Radian, Steradian   평면각, 입체각, 라디안, 스테라디안

(2020-03-22)

1. 호도법, 평면각(라디안,rd), 입체각(스테라디안,sr) 이란?호도법 (Circular Measure)
     - 일반 각도법으로는 무리수 표현이 어려워지는 등 여러가지로 불편하여, 
       길이 비율에 따라 각도를 표현하는 방법

  ㅇ 평면각 (Plane Angle) (라디안)
     - 두 `길이`의 비율로 표현되는 각도

  ㅇ 입체각 (Solid Angle) (스테라디안) 
     - `넓이`와 `길이의 제곱`과의 비율로 표현되는 각도


2. 평면각(라디안) 및 입체각(스테라디안)의 단위 [ SI 단위계의 보조단위 ]평면각,입체각은 순수한 수(數)로 된 단위로써 사실상 무 차원물리량이나,
     - 호도법 표기를 강조하기 위해 단위를 각각 radian, steradian 으로 씀

  ㅇ radian     :  평면각의 단위 [rad]
     - 1 radian 은, 
         . 반지름과 동일한 호의 길이가 품는 각도
            .. 즉, 원주 상에서 그 반경과 같은 길이의 호를 끊어서 얻어진,
            .. 2개의 반경 선 사이에 낀 (평면의) 각을 말함

          

     - 반지름 r인 원에서, 호의 길이 s인 평면각은,  α = s / r = 원주 길이 / 반지름 길이

     - 일반 각도 및 라디안의 관계는,
        . 완전한 원은 원주 길이가 2πr 이므로, 2πr/r [rad]= 2 π [rad] = 360 [˚]

     - 例) 원 전체 원주(1원주) =>  2π[rad] = 360[˚] => 1 [rad] = 180/π[˚] ≒ 57.2958[˚]

  ㅇ steradian  :  입체각의 단위 [sr]
     - 1 steradian 은, 
         . 단위 구에서, 구면 상의 단위 면적을 품는 입체 각도
         . 또는, 구의 반경의 제곱과 같은 표면적에 해당하는 공간 입체 각도
            .. 구의 중심을 정점으로한 구표면에서 그 구의 반경을 한 변으로 하는,
            .. 정사각형 면적(r²)과 같은 곡면 표면적(r²)을 갖는 공간적인 각을 말함

           

     - 반지름 r인 구에서, 표면적 A에 해당하는 입체각은,  ω = A / r2

     - 例) 전 구의 입체각은,
        . 구의 전 표면적이 4πr²이므로,  4π [sr]


3. 구의 미소 면적 및 미소 입체각(differential solid angle) (구좌표계에서)

  ㅇ 구 전체 표면적  A   = 4πr2   [㎡] 
  ㅇ 미소 면적소     dA  = r2 sinθdθdΦ  [㎡]
  ㅇ 미소 입체각     dΩ = sinθdθdΦ  [sr]



Copyrightⓒ   차재복 (Cha Jae Bok)    " 정보통신 및 과학기술 지식을 간결하게 정리,체계화시키고 있습니다. "