DTFT   Discrete Time Fourier Transform   이산시간 푸리에 변환

(2020-10-01)
Top > [기술공통]
[기초과학]
[진동/파동]
[전기전자공학]
[방송/멀티미디어/정보이론]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
전기전자공학 >   1. 전기전자공학
  2. 전기 (Electricity) 이란?
[디지털공학]
[신호 및 시스템]
[회로해석]
[전자기학]
[초고주파공학]
[반도체]
[전자회로]
[전기공학]
[자동제어]
[전자공학(기타일반)]
신호 및 시스템 > [신호 표현/성질]
[시스템 표현/성질]
[신호처리 기초]
[연산 소자]
[이산 신호/이산 시스템]
[변환 해석]
[필터]
[고속 신호 회로 해석]
변환 해석 >   1. 변환 이란?
  2. 주파수 영역
  3. 복소 주파수 영역
[변환 종류]
[라플라스 변환]
[푸리에 변환]
푸리에 변환 >   1. 푸리에 표현
  2. 시간 주파수 관계
[푸리에변환 표현 종류]
[푸리에 급수]
[푸리에 변환 성질]
[푸리에변환(기타일반)]
푸리에변환 표현 종류  1. CTFS(연속시간 푸리에급수)
  2. CTFT(연속시간 푸리에변환)
  3. DTFS(이산시간 푸리에급수)
  4. DTFT(이산시간 푸리에변환)
  5. DFT(이산푸리에변환)
  6. FFT(고속푸리에변환)

Top > [기술공통]
[기초과학]
[진동/파동]
[전기전자공학]
[방송/멀티미디어/정보이론]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
전기전자공학 >   1. 전기전자공학
  2. 전기 (Electricity) 이란?
[디지털공학]
[신호 및 시스템]
[회로해석]
[전자기학]
[초고주파공학]
[반도체]
[전자회로]
[전기공학]
[자동제어]
[전자공학(기타일반)]
신호 및 시스템 > [신호 표현/성질]
[시스템 표현/성질]
[신호처리 기초]
[연산 소자]
[이산 신호/이산 시스템]
[변환 해석]
[필터]
[고속 신호 회로 해석]
이산 신호/이산 시스템 > [A/D,D/A 변환]
[이산 신호,이산 연산]
[이산 푸리에 표현]
[z 변환]
[이산 시스템]
이산 푸리에 표현  1. DTFS(이산시간 푸리에급수)
  2. DTFT(이산시간 푸리에변환)
  3. 디지털 주파수
[이산푸리에변환(DFT)]

1. 이산시간 푸리에변환 (DTFT)

  

  ㅇ DTFT (이산시간 푸리에변환) 
     - X(Ω) : `연속성` 및 `주기성`을 갖는 주파수 스펙트럼 (푸리에 계수)
        . 연속성 : 연속 실수 변수 Ω(디지털 라디안 주파수,[rad/sample])를 지수로 갖는
                   복소지수 연속 함수 임
        . 주기성 : 주파수 구간 (0,2π) 또는 (-π,π)의 주기를 갖음 X(Ω+2πk)=X(Ω)
           .. 즉, 주파수가 유한한 범위 내에 있게 됨

  ㅇ IDTFT (이산시간 역 푸리에변환) 
     - x[n]  : `이산성` 및 `비주기성`을 갖는 시간 신호


2. DTFT의 복소 좌표 표현

  ㅇ DTFT X(Ω)는 복소수 연속함수 이므로, 다음과 같이 복소 좌표계로 표현 가능
     - 직각좌표 형식 : {# X(Ω) = Re[X(Ω)] + jIm[X(Ω)] #} 
     - 극좌표 형식 : {# X(Ω) = |X(Ω)| e^{j\angle X(Ω)} #} 


3. DTFT의 성질

  ㅇ 주기성 : 
[# X(Ω+2mπ) = X(Ω) #]
- 따라서, 전체 주파수영역을 굳이 모두 해석할 필요없이, 2π 구간 만 다루면 됨 ㅇ 대칭성 :
[# X^*(Ω) = X(-Ω) #]
공액 대칭 참조 - 따라서, 반주기 [0,π] 구간 만 해석해도 충분함 * 특히, 실수부 {#Re[X(Ω)]#}는 우 대칭, 허수부 {#Im[X(Ω)]#}는 기 대칭, 진폭스펙트럼 {#|X(Ω)|#}는 우 대칭, 위상스펙트럼 {#\angle X(Ω)#}는 기 대칭선형성 :
[# αx[n]+βy[n] \; \longleftrightarrow \; αX(Ω)+βY(Ω) #]
4. DTFT 수렴 ㅇ x[n]이 절대 가합적 (absolutely summable) ㅇ 또는, x[n]이 유한 에너지를 갖는 에너지 신호일 경우 5. DTFT 변환 쌍 6. 타 변환 과의 관계 샘플링을 통한 CTFT, DTFT 관계 ㅇ DTFT 변환과 z 변환 관계 - DTFT는 z 변환의 특수한 경우로써, z 변환에서 으로 둔 것과 같음 . 즉, DTFT는 z 평면에서 단위 원주 에 대해서 만 z 변환한 것과 같음 7. 임펄스 응답 과의 관계시간영역의 이산 임펄스응답 h[n]을 주파수영역의 DTFT 변환한 것이 주파수응답이 됨


[푸리에변환 표현 종류] 1. CTFS(연속시간 푸리에급수) 2. CTFT(연속시간 푸리에변환) 3. DTFS(이산시간 푸리에급수) 4. DTFT(이산시간 푸리에변환) 5. DFT(이산푸리에변환) 6. FFT(고속푸리에변환)

    요약목록

Copyrightⓒ written by 차재복 (Cha Jae Bok)     (소액후원)