mod-2, mod-n   modulo 2, Modulo-2, Modulo-n   모듈로 n 연산, 모듈러 2 연산

(2020-10-26)

Modulo-2 연산, 법 n 연산, n을 법으로 하는, 모듈러-2 덧셈, 모듈러-2 곱셈, 모듈로 2

Top > [기술공통]
[기초과학]
[진동/파동]
[전기전자공학]
[방송/멀티미디어/정보이론]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
기초과학 >   1. 과학
[수학]
[물리]
[화학]
[지구,천체 과학]
[생명과학]
[뇌과학]
수학 >   1. 수학
[기초수학]
[집합,논리]
[해석학(미적분 등)]
[대수학]
[확률/통계]
[수치해법]
대수학 >   1. 대수학
[기초대수학]
[정수론(수론)]
[조합론/셈법(Counting)]
[선형 대수학]
[추상대수학]
정수론(수론) >   1. 수론
  2. 산술의 기본정리
  3. 페르마의 소정리
[수의 구분/표현]
[나눗셈 (가분성)]
[소수,최대공약수]
[디오판투스 방정식]
[합동, 모듈러 연산]
[수론 (기타)]
합동, 모듈러 연산  1. 합동
  2. 모듈러 연산
  3. mod-2,mod-n

1. 모듈러 연산 (Modular Arthmetic) 이란?

  ㅇ 유한개 원소 만으로, 산술 연산을 하는 것

  ㅇ 모듈로 n 연산 (Modulo-n Operation)
     - 0 부터 n-1 까지의 제한된 정수 n개 만을 사용하여
     - 산술 연산을 수행함

  ㅇ 모듈로 n 연산 표기  :  ( mod n )  
     - 연산 결과 값이 항상 n 보다 작은 양의 정수 값이 됨 (0 포함)


2. 모듈러-2 (Modulo-2)  덧셈 및 곱셈 연산

  ※ 기본적으로, 모듈러-2 나눗셈 연산에 기초함
     - 즉, 2로 나눈 나머지를 염두에 두고 계산하면 됨

  ㅇ 모듈러-2 덧셈 : XOR 게이트(배타적-OR 게이트)로 구현 가능

       

     - 논리값 : 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0

     - 특징
        . 같으면 = 0, 다르면 = 1 
           .. 동일 비트이면 연산 결과가 0, 상이한 비트이면 연산 결과가 1
           .. 즉, a ⊕ b = 0 (a = b), a ⊕ b = 1 (a ≠ b) 
        . 항등원 : 0 (e ⊕ a = a ⊕ e = a)
        . 역원   : 0의 역원은 0, 1의 역원은 1 이 됨 
           .. (a ⊕ a-1 = a-1 ⊕ a = e)

  ㅇ 모듈러-2 곱셈 : AND 게이트로 구현 가능

        

     - 논리값 : 0 ⊗ 0 = 0, 0 ⊗ 1 = 0, 1 ⊗ 0 = 0, 1 ⊗ 1 = 1

     - 특징
        . 하나라도 0 이면 = 0, 모두 1일 경우에 만 = 1
        . 항등원 : 0 (e ⊗ a = a ⊗ e = a)
        . 역원   : 0의 역원은 0, 1의 역원은 0 이 됨
           .. (a ⊗ a-1 = a-1 ⊗ a = e)

  ※ 현대대수학 관점의 대수구조로 봤을 때,
     - 모듈러-2 덧셈 및 곱셈은 가환군에 속함   ☞ 가환군 참조


3. 모듈러-n (Modulo-n)  덧셈 및 곱셈 연산

  ※ 기본적으로, 모듈러-2 연산의 확장이며,
     - n으로 나눈 나머지를 염두에 두고 계산함

  ㅇ 모듈러-n 덧셈
     - i (modulo-n addition) j = r 
        .  i + j를 n으로 나눈 나머지가 r

     - 例) 5 (modulo-7 addition) 3 = 1

  ㅇ 모듈러-n 곱셈
     - i (modulo-n multiplication) j = r 
        .  i x j를 n으로 나눈 나머지가 r

     - 例) 5 (modulo-7 multiplication) 3 = 1


[합동, 모듈러 연산] 1. 합동 2. 모듈러 연산 3. mod-2,mod-n

    요약목록

Copyrightⓒ written by 차재복 (Cha Jae Bok)     (소액후원)