Bernouli Trial, Bernoulli Distribution, Bernoulli Probability Variable   베르누이 시행, 베르누이 분포, 베르누이 확률변수

(2024-06-21)

Binomial Experiment, 이항 실험, 이항 시행


1. 베르누이 시행 (Bernoulli Trial)

  ㅇ 매 시행 마다, 일정(동일) 확률로 나타나고, 각각의 시행이 통계적으로 독립된 시행
     - 例) 동전던지기(매 결과가 오직 두 가지 중 하나만 나옴)와 같은 무작위 확률실험 
       . S = {success,fail} 또는 {1,0} 등


2. 베르누이 시행의 전제조건

  ㅇ (범주성)  각 시행은 2가지 결과 범주 중 1가지로 만 나타남
  ㅇ (일관성)  매 결과 확률은 시행의 횟수와는 상관없이 항상 일정(동일)함
  ㅇ (독립성)  모든 시행은 매번 독립적임


3. 베르누이 시행의 확률적 표현들

  ㅇ 베르누이 시행의 `확률 P` 및 `확률변수 X`
     -  P(성공) = P(X=1) = P(x=1) = p
     -  P(실패) = P(X=0) = P(x=0) = 1-p

  ㅇ 베르누이 `확률분포 B(·)`의 표기   :  X ~ B(1,p)  또는  X ~ Be(1,p)
     - (X : 확률변수, B(·) : 베르누이 분포, p : 모수)
        . 결과가 1 일 때의 성공 확률 p 가 모수인, 베르누이 확률변수 X가 나타내는 확률분포확률분포함수
     - 확률질량함수 (PMF)   :  P(x), P[X = x]
        
[# P_X(x) = p^x (1-p)^{1-x} #]
. (확률변수 값 : {# x=\{1,0\} #}, 성공확률 : {# 0 \le p \le 1 #}) .. x = 1 일 때, P(x) = p .. x = 0 일 때, P(x) = 1 - p - 누적분포함수 (CDF)
[# F_X(x) = \left\{ \begin{array}{ll} 0 & \; x < 0 \\ 1-p & 0 \le \; x < 1 \\ 1 & \; x \ge 1 \end{array} \right. #]
기대값 (Expectation) : E[X] = p
[# μ = E[X] = \sum^1_{x=0} xP_X(x) = \sum^1_{x=0} xp^x(1-p)^{1-x} = (0)(1-p)+(1)(p) = p #]
분산 (Variance) : Var[X] = p(1-p)
[# σ^2 = E[X^2] - (E[X])^2 = E[X^2] - μ^2 \\ \quad = \sum^1_{x=0} x^2p^x(1-p)^{1-x} - p^2 = (0)(p)(1-p)+(1)(p)(1)-p^2 = p-p^2 = p(1-p) #]
4. 베르누이 시행과 관련된 여러 이산확률분포 비교 ㅇ 베르누이분포 : X ~ B(1,p) (1번 만의 베르누이 시행의 성공 확률분포) ㅇ 이항분포 : X ~ B(n,p) (n번 베르누이 시행의 성공 확률분포, n=1일 때 베르누이분포와 같아짐) ㅇ 기하분포 : X ~ Geo(p) (처음 성공할 때까지의 베르누이 시행횟수 분포) ㅇ 파스칼분포 : X ~ NB(x; k,p) (k번째 성공할 때까지의 베르누이 시행횟수 분포)

[이산확률분포]1. 이산확률분포 요약   2. 이산 균등분포   3. 베르누이 분포   4. 이항 분포   5. 음 이항 분포   6. 기하 분포   7. 초기하 분포   8. 포아송 분포   9. 다항 분포  


"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력
  1. Top (분류 펼침)      :     1,591개 분류    6,512건 해설