1. 상태방정식과 전달함수 간의 관계
ㅇ (상태방정식 표현)
[# \mathbf{\dot{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\
\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u} #]
[# s\mathbf{X}(s) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s) \\
\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) #]
ㅇ (`상태방정식` → `전달함수 행렬` 형태로 변환)
- 상태방정식으로부터 전달함수가 유일하게(Uniquely) 결정됨
[# (s\mathbf{I}-\mathbf{A})\mathbf{X}(s) = \mathbf{B}\mathbf{U}(s) \\
\mathbf{X}(s) = (s\mathbf{I}-\mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s) \\
\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) \\
\quad\quad = \mathbf{C}[(s\mathbf{I}-\mathbf{A})^{-1}\mathbf{B}\mathbf{U}(s)]
+ \mathbf{D}\mathbf{U}(s) \\
\quad\quad = [\mathbf{C}(s\mathbf{I}-\mathbf{A})^{-1}\mathbf{B}
+ \mathbf{D}] \mathbf{U}(s) #]
- 전달함수 행렬
[# \mathbf{T}(s) = \frac{\mathbf{Y}(s)}{\mathbf{U}(s)}
= \mathbf{C}(s\mathbf{I}-\mathbf{A})^{-1}\mathbf{B} + \mathbf{D} \\
\qquad\qquad\qquad = \mathbf{C}\frac{\text{adj}(s\mathbf{I}-\mathbf{A})}
{\det(s\mathbf{I}-\mathbf{A})}\mathbf{B} + \mathbf{D} #]
- 한편, 특성방정식은, 전달함수 분모를 0으로 놓은 것
[# \det(s\mathbf{I}-\mathbf{A}) = |s\mathbf{I}-\mathbf{A}| = 0 #]
ㅇ (블록선도 표현)