Data Mining   데이터 마이닝, 데이타 마이닝

(2019-04-17)

1. 데이터마이닝

  ㅇ 데이터에 내재된 유용한 패턴이나 변수들간의 관계를 정교한 분석모형으로 찾아내는 작업
     - 대규모 데이터에 내재된 관심있는 구조를 자동으로 찾아내는 기술


2. 데이터마이닝 특징

  ㅇ 데이타마이닝은 최종사용자들이 데이타에 내재된 패턴을 찾아낼 수 있도록 도와줄 뿐이지,
     - 발견된 패턴의 타당성이나 가치를 판단해 주지는 못함 
        . 결국, 이의 최종적인 목적은 예측모델을 통한 의사결정지원 임

  ㅇ 탄생배경
     - 기계학습(Machine Learning), 패턴인식, 통계학, 시각화(Visualization) 등을 포
       함한 다양한 학문분야로부터 영향을 받아 탄생


3. 데이터마이닝 주요 기법들

  ㅇ 연관성 규칙 발견 (Association Rule Discovery)
  ㅇ 사례 기반 추론 (Case-Based Reasoning)
  ㅇ 군집분석 (Cluster Analysis)
  ㅇ 연결분석 (Link Analysis)
  ㅇ 판별분석 (Discrimination Analysis)
  ㅇ 의사 결정 나무 (Decision Tree)
  ㅇ 인공 신경망 (Artificial Neural Network)
  ㅇ 유전자 알고리즘 (Genetic Algorithm)
  ㅇ OLAP (On-Line Analytical Processing)


4. 일반적인 데이터마이닝 절차

  ㅇ 데이터 추출(Data Selection) → 데이터 정제(Cleaning) → 데이터 변형(Tansformat-
     ion) → 분석(Analysis) → 해석(Interpretation) → 보고서 작성(Reporting)

[데이터웨어하우스]1. DW(데이터웨어하우스)이란?   2. EDW   3. ODS   4. OLAP   5. 데이터 마이닝   6. 데이터 마트  

  1. Top (분류 펼침)      :     1,591개 분류    6,513건 해설

"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"
     [정보통신기술용어해설]       편집·운영 (차재복)          편집 후원          편집 이력 (금일 3건)