1. 상관 및 상관 분석 이란?
ㅇ 상관성 (Correlation)
- 두 변량 간의 상관 관계성
ㅇ 상관 분석 (Correlation Analysis)
- 두 변량 간에 `선형 관계`의 유무,크기,방향성 등 두 변량 간에 얼마나 밀접하게 관련되는가의,
- 상관관계 정도를 수치적으로 알아내려는 통계적 분석 방법
2. 상관분석, 회귀분석 간의 비교
ㅇ 상관분석 : 두 변량 상호 간에 서로 영향을 미치는지 상관관계의 `유무`,`크기`,`방향성` 분석
- 여기서, 상관은 상관관계 만을 따지며, 인과관계를 전제로 하지 않음
ㅇ 회귀분석 : 두 변량 간에 확률적 함수 관계를 찾아내고,
한 변량에 근거하여 다른 변량의 변화를 `예측` 분석
- 여기서, 회귀는 두 변량을 요인과 결과로 구분하고, 인과관계를 분석하게 됨
3. 변량 간에 상관관계의 표현
ㅇ 상관관계의 도형적 표현 ☞ 산점도
ㅇ 상관관계를 내포하는 확률 : 결합확률, 조건부확률, 주변확률
ㅇ 상관관계의 크기 척도
- 확률 변수 간 상관성 평가 척도 ☞ 공분산, 상관계수
- 시간 신호 간 상관성 평가 척도 ☞ 상관함수(자기상관,상호상관)
ㅇ 상관관계의 방향성
- 양의 상관관계 : 두 변량이 같은 방향으로 움직임 (공분산,상관계수가 양(+) 임)
- 음의 상관관계 : 두 변량이 반대 방향으로 움직임 (공분산,상관계수가 음(-) 임)
- 낮은 상관관계 : 두 변량이 선형독립 (공분산,상관계수가 영(0)에 가까움)
ㅇ 다중 변량
- 다중 상관계수 (Multiple Correlation Coefficient)
- 편 상관계수 (Partial Correlation Coefficient)
- 정준 상관계수 (Canonical Correlation Coefficient)