Ring (환), Ring Axiom   환 (Ring), 환 공리

(2020-03-16)

환, 환

1. 환(環,Ring) 이란?

  ㅇ 어떤 집합 R 및 그 집합 위에 2개의 이항연산(덧셈,곱셈)이 정의되는,
     - 가장 일반적인 대수 구조

  ㅇ 환의 표기 : `( R, +, ∙)` 또는 `< R, +, ∙ >` 또는 `환 R`
     - 곱셈 기호 ·는 생략하는 것이 관례임


2. 환(環)의 공리(Axiom)

  ㅇ 덧셈(+) 연산에 대해  :  ( R, + )는 덧셈에 대한 가환군(아벨군)
     - ①  닫혀있음 (closure)
     - ②  덧셈 항등원(`0`)이 존재 (identity)
        .  a + 0 = 0 + a = a
     - ③  각 성분에 대해 역원이 존재함 (inverse)
        .  a + (-a) = (-a) + a = 0
     - ④  모든 성분에 대해 결합법칙이 성립 (associative)
        .  (a + b) + c = a + (b + c)
     - ⑤  모든 성분에 대해 교환법칙이 성립 (commutative)
        .  a + b = b + a

  ㅇ 곱셈(·) 연산에 대해  :  ( R, · )
     - ⑥  닫혀있음 (closure)
     - ⑦  모든 성분에 대해 결합법칙이 성립 (associative)
        .  (a·b)·c = a·(b·c)
     * (교환법칙,항등원,역원 같은 제약 없음)

  ㅇ 덧셈(+) 및 곱셈(·) 연산에 대해  :  ( R, +, · )
     - ⑧  덧셈에 대한 곱셈 연산분배법칙이 성립 (distributive)
        .  a·(b + c) = a·b + a·c   (좌 분배 법칙)
        .  (a + b)·c = a·c + b·c   (우 분배 법칙)


3. 환, 가환군(아벨군),  비교

  ㅇ 환을 공리와 비교 표현하면,
     - 덧셈에 대해서는 즉, ( R, + )는 가환군이고,
     - 곱셈에 대해서는 즉, ( R, ·)는 결합법칙이 성립하고,
     - 덧셈 및 곱셈에 대해서는, 분배법칙이 성립함
     * 즉, 환은, + 에 대해 가환군, · 에 대해 반군을 이루는 대수 구조 임

  ㅇ 한편, 환은, 가장 일반적인 대수 구조로써, 
     - 특히, 곱셈에서 교환법칙 성립,항등원 존재,역원 존재와 같은 제약을 두지 않음
         . 곱셈의 교환법칙까지 성립한다면, `가환환` 이라고 함
         . 곱셈의 항등원까지 갖으면, `단위원을 갖는 환(단위환)` 이라고 함
         . 이들에 더하여, 곱셈의 역원 존재까지도 포함하면, `` 이라고 함


4. 환의 例 정수 환(Ring of Integer) (Z,+,∙)
     - 정수의 덧셈과 곱셈에 대해 항등원을 갖는 가환환
     - 정수환은 정역이긴 하지만 체는 아님. ∵ 곱셈 역원이 존재 않음.
  ㅇ 유리수 환 (Q,+,∙)
  ㅇ 실수 환 (R,+,∙)
  ㅇ 복소수 환 (C,+,∙)
  ㅇ 짝수집합 환 (2Z,+,∙)
  ㅇ 행렬 환 (Mn(R),+,∙)
  ㅇ 다항식 환(Polynomial Ring) R[x]


5. 환의 종류

  ※ ☞ 환의 종류 참조
     - 2개 이항연산을 갖는 가장 일반적인 대수 구조로써의 환은,
     - 추가적인 조건이 부여됨에 따라, 더 작은 또다른 환의 형태들이 정의됨
        . 가환환,단위환,정역,


[환(Ring)] 1. 환(Ring) 2. 환의 종류 3. 정수 환 4. 다항식 환
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
      4.   대수학
            1. 대수학
        1.   기초대수학
        2.   정수론(수론)
        3.   선형 대수학
        4.   추상대수학
              1. 추상 대수학
              2. 대수 구조
          1.   연산
          2.   군(Group)
          3.   환(Ring)
            1.   1. 환(Ring)
                2. 환의 종류
                3. 정수 환
                4. 다항식 환
          4.   체(Field)
      5.   확률/통계
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공학일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌