Poisson Distribution   포아송 분포

(2020-04-05)

푸아송 분포

1. 포아송 분포 (Poisson Distribution)

  ㅇ 시행 횟수는 많으나, 특정 사건의 발생 확률이 아주 작은 확률분포
     - 주로, 시간적,공간적으로 발생 빈도가 낮은 희귀한 사건의 발생 수 등이 잘 설명됨
     - 특히, 한정된 구간(시간,공간) 내 드물게 발생하는 어떤 사건의 발생 확률예측 등

  ㅇ 프랑스 수학자,물리학자 포아송(Simeon -Denis Poisson,1781~1840)이 제시
     - 근대 확률론의 기초 확립, 포텐셜 개념 도입 등 기초 수학, 응용 수학에 걸쳐 폭넓은 업적


2. 포아송 분포의 전제조건

  ㅇ 독립성
     - 다른 구간(시간,공간)에서 발생하는 사상은 서로 통계적 독립
  ㅇ 일정성 
     - 단위 구간(시간,공간) 내 발생 확률은 동일
        . 例) 1 시간 60명 손님이면, 1분 1명,10분 10명,20분 20명 등
  ㅇ 비집락성
     - 2 이상의 사상이 극히 작은 구간(시간,공간)에서 동시 발생할 확률은 무시할 정도로 작음

  ※ 즉, 사건 발생이,
     - 서로 통계적 독립이고, 사건 발생 확률이 일정하며,
     - 아주 작은 구간(시간,공간) 내 동시 발생 확률은 미미함


3. 포아송 분포의 확률적 특징

  ㅇ 표기 : X ~ Poi(λ) 
     - 모수 λ(평균 발생 횟수)인 포아송 분포

  ㅇ 확률질량함수
      
[# p_X(x) = \begin{cases} \; \dfrac{λ^x e^{-λ}}{x!} & (x=0,1,2,\cdots,\;λ>0) \\ \\ \; 0 & (oterwise) \end{cases} #]
- 확률변수 x : 0,1,2,3, ...등 사건 발생 수 - 모수 λ : 평균 발생 횟수 . (평균 = 분산 = 모수 λ : 아래 참조) ㅇ 기대값
[# E[X] = \sum^{\infty}_{x=0} x \frac{λ^x e^{-λ}}{x!} = λ \sum^{\infty}_{x=1} \frac{λ^{x-1} e^{-λ}}{(x-1)!} = λ \sum^{\infty}_{y=0} \frac{λ^{y} e^{-λ}}{y} = λ \left( \left( \sum^{\infty}_{x=0} P_X(x) \right) = 1 \right) = λ #]
분산
[# Var[X] = E[X^2] - (E[X])^2 = \left(E[X(X-1)] + E[X]\right) - (E[X])^2 = λ^2 + λ - λ^2 = λ #]
- 여기서,
[# E[X(X-1)] = \sum^{\infty}_{x=0}\;x(x-1)\;\frac{λ^x e^{-λ}}{x!} = λ^2 \sum^{\infty}_{x=2} \frac{λ^{x-2}e^{-λ}}{(x-2)!} = λ^2 \sum^{\infty}_{y=0} \frac{λ^{y}e^{-λ}}{y!} = λ^2 #]
4. 포아송 분포와 타 확률분포 관계 ㅇ 포아송 분포는, - 이항 분포의 특수한 경우(극한 분포)로 유도될 수 있음 ㅇ 즉, 이항분포가 성공률이 작고 시행횟수가 클 경우에, 포아송 분포에 근사하게 됨 5. 포아송 분포의 응용 ※ 한정된 구간(시간,공간) 내 사건의 평균 발생 횟수(λ)를 알 때, - 그 사건이 몇회(x) 발생될 확률 P(X=x)을 구하는데 유용 . 시간당 손님의 방문 수, 월간 기계고장 횟수, 단위 길이당 균열의 발생 수 등과 같이, . 한정된 구간(시간,장소)에서 희귀한 어떤 사건이 발생할 확률예측 ㅇ 즉, 포아송 분포 응용 例 - 단위시간당 교차로를 지나가는 자동차 대수 - 단위면적당 결점의 수 - 어떤 책의 임의 페이지에서 잘못 인쇄된 글자의 수 - 하루 동안 잘못 걸린 전화의 수 - 주어진 하루 동안 방문한 고객의 수 - 통신에서의 트래픽 등이 포아송 분포를 따르고 있다고 알려짐 . 트래픽량을 발생호수에 따라 실측표시하여 보면 그 분포가 근사적으로 포아송 분포 를 따르고 있음을 알 수 있음


[이산확률분포] 1. 이산확률분포 요약 2. 이산 균등분포 3. 베르누이 분포 4. 이항 분포 5. 음 이항 분포 6. 기하 분포 7. 초기하 분포 8. 포아송 분포 9. 다항 분포
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
      4.   대수학
      5.   확률/통계
        1.   확률 이란?
        2.   확률 정리/법칙
        3.   확률 공간
        4.   확률 모형,분포
              1. 랜덤성
              2. 확률 모형, 확률 분포
              3. 확률 변수
          1.   확률 함수
          2.   이산확률분포
            1.   1. 이산확률분포 요약
                2. 이산 균등분포
                3. 베르누이 분포
                4. 이항 분포
                5. 음 이항 분포
                6. 기하 분포
                7. 초기하 분포
                8. 포아송 분포
                9. 다항 분포
          3.   연속확률분포
          4.   정규분포
          5.   난수 생성
        5.   확률 변수
        6.   확률 과정
        7.   통계량
        8.   통계학
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공학일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌