Random Vector, Probability Vector   랜덤 벡터, 확률 벡터, 벡터 확률변수, 벡터 랜덤변수

(2020-01-28)

Multivariate Probability Variable, Multivariate Random Variable, 다변량 확률변수, 다중 랜덤변수, 다중 확률변수, 다변량 확률분포, 평균 벡터

1. 다 변량 확률변수 / 다 차원 확률변수 / 다중 확률변수

  ㅇ 동일 표본공간에서 정의되는 여러 확률변수
     - 확률변수들을 한번에 여러개 묶어놓은 것
        . 1개 표본에 여러 확률변수가 동시에 관련되는 경우


2. 다변량 결합 확률적 표현 (☞ 결합 통계량 참조)

  ㅇ 다변량 확률변수로 결합된 함수기대값

      

  ㅇ 다변량 결합 누적분포함수(CDF)

      

  ㅇ 다변량 결합 확률질량함수(PMF)

      

  ㅇ 다변량 결합 확률밀도함수(PDF)

      


3. 확률 벡터 / 랜덤 벡터 / 벡터 확률변수

  ㅇ 다변량 확률변수벡터로 표기한 것
     - 확률 벡터 : {# \mathbf{X} = [X_1 \; X_2 \; \cdots \; X_n]^T #}
     - 랜덤 표본값 : {# \mathbf{x} = [x_1 \; x_2 \; \cdots \; x_n]^T #}

  ㅇ 특징
     - (연관성) 원소들 간에 어떤 연관성이 존재 함
     - (확률값) 매 원소가 0~1인 확률값을 갖는 확률변수로 이루어짐
     - (총 확률값) 모든 원소가 합해지면 확률값 1 이 됨

     * 한편, 여러 확률벡터를 함께 고려하는 경우는, ☞ 확률행렬 참조


4. 확률벡터의 통계량 표현확률벡터의 기대값 =>  평균 벡터 (Mean Vector)
       
[# \mathbf{μ} = E[\mathbf{X}] = E \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{bmatrix} = \begin{bmatrix} μ_1 \\ μ_2 \\ \vdots \\ μ_n \end{bmatrix} #]
확률벡터의 분산 => 공분산 행렬 (Covariance Matrix)
[# Cov[\mathbf{X}] = E[(\mathbf{X}-\mathbf{μ})(\mathbf{X}-\mathbf{μ})^T] \\ \qquad\quad = \begin{bmatrix} Cov[X_1,X_1] & Cov[X_1,X_2] & \cdots & Cov[X_1,X_n] \\ Cov[X_2,X_1] & Cov[X_2,X_2] & \cdots & Cov[X_2,X_n] \\ \vdots & \vdots & \vdots & \vdots \\ Cov[X_n,X_1] & Cov[X_n,X_2] & \cdots & Cov[X_n,X_n] \\ \end{bmatrix} \\ \qquad\quad = \begin{bmatrix} σ_{11} & σ_{12} & \cdots & σ_{1n} \\ σ_{21} & σ_{22} & \cdots & σ_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ σ_{n1} & σ_{n2} & \cdots & σ_{nn} \\ \end{bmatrix} #]
- 한편, . 공분산 행렬은, {# σ_{ij} = Cov[X_i,X_j] = Cov[X_j,X_i] = σ_{ji} #}인 대칭 행렬 임 . {# σ_{ii} = σ_i^2 = Var[X_i] #} . (명칭) 공분산 행렬, 분산 공분산 행렬, 분산 행렬


[다변량 분포] 1. 다변량 랜덤변수 2. 독립항등분포 3. 공분산 행렬
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
      4.   대수학
      5.   확률/통계
        1.   확률 이란?
        2.   확률 정리/법칙
        3.   확률 공간
        4.   확률 모형,분포
        5.   확률 변수
              1. 확률 변수
          1.   확률변수의 함수,합
          2.   이변량 랜덤변수
          3.   다변량 분포
            1.   1. 다변량 랜덤변수
                2. 독립항등분포
                3. 공분산 행렬
        6.   확률 과정
        7.   통계량
        8.   통계학
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공학일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌