Divergence Theorem, Gauss-Ostrogradsky Theorem   발산 정리, 가우스 정리

(2019-02-23)
1. 발산 정리 (Divergence Theorem)

  ㅇ `벡터계 수직성분을 폐곡면에 대하여 적분한 것은,
      그 표면내에 포함된 체적안의 임의 점에서의 벡터계의 발산값을 적분한 것과 같다.`
      - 즉, 페곡면에서 벡터표면 적분은 그 벡터의 발산체적 적분한 것과 같음
        벡터체적적분면적분과의 변환 관계를 나타냄
     - 즉, 발산정리를 이용하면,
        . 어떤 체적 전체에 대한 3중 적분(체적 적분)을,
        . 그 체적의 표면을 둘러싸는 폐곡면에 대한 2중 적분(면적 적분)으로,
        . 변환시킬 수 있는 잇점이 있음
        . 물론, 그 역도 가능함


[적분 정리] 1. 그린 정리 2. 발산 정리 3. 스토크스 정리

 
        최근수정     요약목록     참고문헌