IOR   Refraction Ratio, Refractive Index, Index of Refraction   굴절률, 굴절지수

(2019-10-15)

굴절율

1. 굴절률(Refraction Index)매질 내 진행 속도와 관련되어지는 의 특성 
     - 진공빛 속도매질빛 속도로 나눈 비율 (속도비,速度比)
        . 서로 다른 매질에서 진행 속도 차이에 따라 투과파굴절하는 정도

  ※ 굴절 현상은, 매질의 상호작용에 따라 달라짐       
     - 속도매질에 따라 다르며, 
     - 매질굴절파장에 따라 달라짐

  ㅇ 무차원/단위없음


2. 굴절률의 표현식

  ㅇ  n  =  (진공속도) / (매질속도)  =  c / v  ≥ 1
      
[# n = \frac{c}{v} = \sqrt{\frac{\epsilon \mu}{\epsilon_o \mu_o}} = \sqrt{\epsilon_r \mu_r} \; \geq \; 1 #]
ㅇ 또는, n = (기준되는 매질에서의 속도) / (비교하려는 매질내의 속도) ※ [참고] ☞ 스넬의 법칙 참조 - 입사각, 반사각, 굴절각(굴절률)과의 관계를 나타내는 법칙 3. 굴절률의 특징광학적으로 밀(dense)/소(rare)한 매질 (n ∝ √εr) - 밀한 매질 ⇒ 큰 굴절률 . (∵ 단위체적당 원자수가 많으면 그만큼 비유전율 εr이 큼) - 소한 매질 ⇒ 작은 굴절률 . (진공에서 가장 작음, n = 1) ㅇ 굴절률과 속도와의 관계 (n ∝ 1/v) - 굴절율이 클수록, 매질의 진행속도가 느려짐 . 즉, 의 속도와 굴절률은 반비례 - 자유공간(진공)에서 의 속도가 가장 큼 ㅇ 굴절률은 파장에 의존적임 (n ∝ 1/λ) ☞ 분산(Dispersion) 참조 - 파장이 길면 굴절률이 작아짐 (진행속도 빨라짐) - 파장이 짧으면 굴절률이 커짐 (진행속도 느려짐) * 굴절률의 파장 의존성 : n(λ) = λ0/λ . λ0 : 진공에서 파장, λ : 매질에서 파장 굴절률의 변동성 - 굴절률은 매질의 특성(소밀), 매질온도, 파동파장 등 여러 요인에 따라 변화될 수 있음 ※ 한편, 서로다른 굴절률의 매질들을 지나가도, 주파수,주기는 동일 함 - 즉, f1 = f2, T1 = T2 4. 굴절률의 측정 ㅇ 일반적으로, 다음의 기준 파장(reference wavelength) d선 또는 e선을 기준으로 측정함 - 프라운호퍼선 중 d선 : 파장 587.6 nm (광학 렌즈 분야에서 기준으로 많이 사용) - 프라운호퍼선 중 e선 : 파장 546.1 nm (ISO의 참조 기준 파장) 5. [참고사항] ㅇ 주요 매질 굴절률 (n≥1) - 진공 : 1.0, 공기 : 1.0003, 물 : 1.333, 유리(SiO₂) : 약 1.45, 에탄올 : 1.36, 다이아몬드 : 2.42 등 * n 이 클수록 밀도가 높다고 할 수 있음 ㅇ 광통신에서의 굴절률 ☞ 광통신 굴절률 참조 - 통상, 1.4 ~ 1.5 정도 (그 값이 작을수록 매질전파 속도가 커짐) ㅇ 대기에서의 굴절률 ☞ 대기 굴절률 참조 - 전파가 대기 환경에 따라 굴절되는 비율도파로굴절률 ☞ 유효 굴절률 참조


[굴절과 반사] 1. 굴절 (Refraction) 2. 굴절률 3. 스넬의 법칙(굴절 법칙) 4. 반사 (Reflection) 5. 전반사 6. 페르마 원리 7. 광 경로

 
        최근수정     요약목록     참고문헌