Conditional Proposition   조건 명제

(2021-11-23)

조건 (Conditional), 함의 (Implication), 함의, iff, 필요충분조건, 필요조건, 충분조건

1. 조건 명제 (Conditional Proposition)가정 조건과 결론 조건을 연결하는 특정한 형태의 주장


2. 조건 명제의 표기 및 표현

  ㅇ (표기)  조건 (Conditional), 함의 (Implication)  :  →
     - `가정,전제 (hypothesis,antecedent)` → `결론,결과 (conclusion,consequent)` 
        . 이때, 내용적 연관성,인과관계를 완전히 무시하고, 
        . 오직, 순수한 형식적 연결 만을 따짐

     - 例) 명제 p → q 가 있다고 할 때,
        . p,q는, 개별 명제이며,
        . 가정인 p와 결론인 q는, 조건 이라고 하고,
        . 명제 p → q를 조건 명제 라고 함

  ㅇ (표현상 차이)  조건 및 함의의 표현 상의 구분  
     - `p 이면 (conditional) q 이다` (`if p then q`)  [조건(conditional)적 표현]
     - `p 는 q 를 함축 (imply) 한다` (`p imply q`)     [함의(implication)적 표현]

  ㅇ (영문 표현)
     -  "if p then q" (가설을 강조하는 형식)
     -  "p only if q" (결론을 강조하는 형식)
     -  "p imply q"   (암시/내포를 강조하는 형식)


3. 조건 명제진리표 (truth table of conditional proposition)

     

  ㅇ 전제 p가 거짓이면, 결론 q의 참과 거짓에 관계없이, 항상 참 임
     - 만일, 가정이 거짓이면, 나타난 결과가 어떻든, 이때의 진술(조건문)은 항상 참이 됨
  ㅇ 전제 p가 참이면, 결론 q가 참일 때 만, 참 임
     - 만일, 가정이 참이면, 나타난 결과가 참이어야 만, 이때의 진술(조건문)은 참이 됨
  ㅇ 전제 p가 참이고, 결론 q가 거짓일 경우에 만, 거짓 임
     - 만일, 가정이 참인데도 불구하고, 나타난 결과를 거짓으로 하면, 이 진술(조건문)은 거짓 임

  ※ (핵심 요약)
     - 전제 p가 거짓이거나, 결론 q가 참인 경우에만, 참 임
        . 즉, "(not p) or q"
     - 전제가 거짓이면, 결론이 참이든 거짓이든 관계없이, 항상 참 임


4. 필요조건 (necessary condition), 충분조건 (sufficient condition)

  ㅇ 만일, 조건 명제 p → q가 참이라면, p ⇒ q 라고 표기하고, 

     - 이때, 명제 p는, q가 되기위한 충분조건 이라고 함
        .  "p is sufficient for q"
     - 한편, 명제 q는, p가 되기위한 필요조건 이라고 함
        .  "q is necessary for p"


5. 필요충분조건 (necessary and sufficient condition) 

  ㅇ 만일, 쌍 조건 명제 p ↔ q가 참이라면, p ⇔ q 라고 표기하고,
     - 이때, p는, q가 되기위한 필요충분조건 이라고 함

  ㅇ 따라서, 필요충분조건은 다음과 같은 의미를 갖음
     - 둘 다 같음 
     - 즉, 가정 명제와 결론 명제가 동일함
     - 함의와 그 역이 동시에 성립
     - 논리동치 (Logically Equivalent)

  ㅇ 필요충분조건의 표기  :  ⇔ , iff, if and only if

  ㅇ 필요충분조건(쌍 조건 명제)의 진리표
       
     - 즉, 둘 다 참이거나 거짓일 때 만, 참으로 간주됨


6. [참고사항]

  ㅇ (연산자 우선순위 낮음)
     - 연산자 (→)는, 연산자 논리곱(∧),논리합(∨),논리부정(¬) 보다,
       연산자 우선순위가 낮은(늦은) 것으로 함

  ㅇ (정리,증명에의 적용)
     - `중요한 논리적 함의`는 종종,  `정리(Theorem)`라고 부르며,
     - `정리라는 논리적 함의의 타당성을 확립하는 것`을,  `증명(Proof)` 이라고 함


[수리논리(논리기호 등)] 1. 수리 논리학 2. 논리식 3. 조건 명제 4. 부정 5. 논리합,논리곱 6. 한정사

 
        최근수정     요약목록     참고문헌