Trigonometric Series   삼각 급수

(2020-02-05)

Trigonometric Function Series, 삼각함수 급수

1. 삼각 급수 (Trigonometric Series)삼각함수(사인함수/코사인함수)의 무한 합으로 표현되는 급수
       
[# a_0 + \sum^{\infty}_{n=1} (an \cos nx + b_n \sin nx) #]
- 또는, 오일러 공식({# e^{j \theta} = \cos \theta + j \sin \theta #})에 의한 다음의 멱급수도 삼각 급수라고 함
[# \sum^{\infty}_{n=-\infty} c_n e^{jnx} #]
※ [참고] ☞ 푸리에급수 참조 2. 삼각함수 급수 (Series for Trigonometric Function)사인 함수 :
[# \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum^{\infty}_{n=0} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad\quad (-\infty < x < \infty) #]
코사인 함수 :
[# \cos(x) = x - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum^{\infty}_{n=0} \frac{(-1)^n x^{2n}}{(2n)!} \quad\quad (-\infty < x < \infty) #]
탄젠트 함수 :
[# \tan(x) = x + \frac{x^3}{3} + \frac{2}{15} x^5 + \cdots \quad\quad (-\frac{\pi}{2}< x < \frac{\pi}{2}) #]


[급수] 1. 급수 2. 급수 공식 3. 급수 수렴 4. 급수 종류 5. 멱 급수 6. 멱급수 공식 7. 삼각 급수 8. 테일러 급수 9. 푸리에 급수

 
        최근수정     요약목록     참고문헌