Matrix Equation, Vector Equation   행렬 방정식, 벡터 방정식

(2020-05-02)

Coefficient Matrix, 계수 행렬, Augmented Matrix, 첨가 행렬, System Matrix, 시스템 행렬, 시스템 매트릭스

Top > [기술공통]
[기초과학]
[진동/파동]
[방송/멀티미디어/정보이론]
[전기전자공학]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
기초과학 >   1. 과학
[수학]
[물리]
[화학]
[지구,천체 과학]
[생명과학]
[뇌과학]
수학 >   1. 수학
[기초수학]
[집합,논리]
[해석학(미적분 등)]
[대수학]
[확률/통계]
[수치해법]
대수학 >   1. 대수학
[기초대수학]
[정수론(수론)]
[선형 대수학]
[추상대수학]
선형 대수학 >   1. 선형대수
[벡터]
[행렬]
[벡터 공간]
[고유값문제]
[선형변환]
[직교성,대각화]
[선형대수 수치방법]
행렬 >   1. 행렬 이란?
  2. 행렬 용어
  3. 가역행렬 정리
[행렬 연산]
[행렬 종류]
[행렬식]
[행렬 응용]
행렬 응용   1. 선형 연립 방정식
  2. 기본 행 연산
  3. 기본 행렬
  4. 행 사다리꼴
  5. 가우스 소거법
  6. 추축
  7. 행렬방정식(계수행렬,첨가행렬)
  8. 커널

Top > [기술공통]
[기초과학]
[진동/파동]
[방송/멀티미디어/정보이론]
[전기전자공학]
[통신/네트워킹]
[정보기술(IT)]
[공학일반(기계,재료등)]
[표준/계측/품질]
[기술경영]
기초과학 >   1. 과학
[수학]
[물리]
[화학]
[지구,천체 과학]
[생명과학]
[뇌과학]
수학 >   1. 수학
[기초수학]
[집합,논리]
[해석학(미적분 등)]
[대수학]
[확률/통계]
[수치해법]
대수학 >   1. 대수학
[기초대수학]
[정수론(수론)]
[선형 대수학]
[추상대수학]
선형 대수학 >   1. 선형대수
[벡터]
[행렬]
[벡터 공간]
[고유값문제]
[선형변환]
[직교성,대각화]
[선형대수 수치방법]
행렬 >   1. 행렬 이란?
  2. 행렬 용어
  3. 가역행렬 정리
[행렬 연산]
[행렬 종류]
[행렬식]
[행렬 응용]
행렬 종류   1. 행렬의 종류
  2. 정방 행렬
  3. 삼각 행렬
  4. 전치 행렬
  5. 대각 행렬
  6. 직교 행렬
  7. 대칭 행렬
  8. 복소수 행렬
  9. 계수 행렬
  10. 역 행렬
  11. 가역 행렬
  12. 특이 행렬
  13. 치환 행렬
  14. 블록 행렬

1. 선형연립방정식행렬벡터 표현선형 연립방정식행렬 또는 벡터로 된 방정식 형태로 표현시켜 간략화 도모


2. 행렬 방정식 (Matrix Equation)선형연립방정식을 계수 행렬과 미지수 벡터와의 곱으로 표현한 것              ☞ 행렬 곱셈 참조
     - 즉, 선형연립방정식을 행 위주의 정방행렬과 미지수 벡터와의 곱셈으로 나타낸 것

  ㅇ 표현식
     -  A x = b
        . A : 크기 m x n 의 행렬 (계수 행렬 또는 시스템 행렬)
           .. m : 선형방정식 갯수
           .. n : 미지수(차원) 갯수
        . x : 미지수 벡터 (unknown vector)
        . b : 우변 결과 벡터 (righthand-side vetor) (때론, 입력 행렬 이라고도 함)

  ㅇ 계수 행렬(Coefficient Matrix) 또는 시스템 행렬(System Matrix) : A고유값 참조
     - 선형연립방정식의 계수 만으로 이루어진 행렬
        . 통상, 선형 연립방정식A x = b 로 나타낼 때, 행렬 A를 말함
        . 이때, 행렬 A는, 입력 b와는 무관하며, 시스템 고유의 특성을 나타냄

  ㅇ 첨가 행렬/붙인 행렬 (Augmented Matrix)
     - 계수 행렬 및 우변 상수항을 모두 포함한 행렬
        .  계수 행렬 및 우변 상수항을 모두 포함한 행렬
        .  각 행이 선형연립방정식의 하나의 식과 대응되는 행렬

  ㅇ 例)
      


3. 벡터 방정식 (Vector Equation)선형연립방정식을 미지수들의 일차결합으로 표현한 것
     - 즉, 선형연립방정식을 행 위주가 아닌, 열 위주로 나타낸 것
        . 결국, 벡터 방정식의 좌변이 열들의 선형결합 형태를 보임

  ㅇ 표현식
     -  a1x1 + a2x2 + ... + anxn = b
     -  A x = b
     - 여기서,
        . A : 계수 행렬(시스템 행렬)
        . ai : 계수 행렬 A를 열 벡터들로 행렬 분할시킨 것
        . b(입력) : 기지 벡터 
        . x : 구하고자 하는 미지 벡터

  ㅇ 例)
     

  ㅇ 한편, 직선,평면벡터 방정식으로 표현한 것은,  ☞ 직선 방정식, 평면 방정식 참조


[행렬 응용] 1. 선형 연립 방정식 2. 기본 행 연산 3. 기본 행렬 4. 행 사다리꼴 5. 가우스 소거법 6. 추축 7. 행렬방정식(계수행렬,첨가행렬) 8. 커널
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
      4.   대수학
            1. 대수학
        1.   기초대수학
        2.   정수론(수론)
        3.   선형 대수학
              1. 선형대수
          1.   벡터
          2.   행렬
                1. 행렬 이란?
                2. 행렬 용어
                3. 가역행렬 정리
            1.   행렬 연산
            2.   행렬 종류
            3.   행렬식
            4.   행렬 응용
              1.   1. 선형 연립 방정식
                  2. 기본 행 연산
                  3. 기본 행렬
                  4. 행 사다리꼴
                  5. 가우스 소거법
                  6. 추축
                  7. 행렬방정식(계수행렬,첨가행렬)
                  8. 커널
          3.   벡터 공간
          4.   고유값문제
          5.   선형변환
          6.   직교성,대각화
          7.   선형대수 수치방법
        4.   추상대수학
      5.   확률/통계
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공학일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌