State Equation, Output Equation, Dynamic Equation   상태 방정식, 출력 방정식, 동적 방정식

(2021-04-04)

상태 공간 모델의 방정식 표현, 상태변수 표현법

1. `상태` 및 `상태 방정식` 이란?상태 (State)
     - 시스템/계(系)의 거동(동적 동작 상태)을 규정하는 최소 개의 상태 변수들의 모임

  ㅇ 상태 방정식
     - 여러 상태 변수들을 서로 엮어주는 관계식
     - 그 형태는,
        . 입력,출력 변수 이외에도 n개의 상태 변수들로 엮어진 연립 1계 미분방정식 형태

     * 한편, 열역학에서의 상태 방정식은,  ☞ 상태 방정식 참조


2. 동적 방정식 = 상태 방정식 및 출력 방정식

  ※ 2개의 방정식을 총칭하여,
     - 동적 방정식(Dynamic Equation) 또는 상태공간 표현(State Space Representation)이라고 함

  ㅇ 상태 방정식 (State Equation)
     - 다음 상태를 입력 및 현재 상태들로 구성시킨 대수적 방정식
        . 시스템 내 각 상태 변수미분이, 입력 변수상태 변수와의 선형결합으로 표시됨
           .. 입력 변수, 상태 변수로 이루어진 1계 연립 미분방정식 형태를 띔

     * 동적 시스템을 일련의 1계 미분방정식들로 표현한 것
        . 즉, 다루기 어려운 고계 미분방정식대수적으로 용이한 1계 연립 미분방정식으로 표현
    
  ㅇ 출력 방정식 (Output Equation)
     - 시스템 출력을 입력과 상태 변수들로 구성시킨 대수적 방정식
        . 시스템 출력변수가, 상태변수와 입력의 선형결합으로 표시됨

     * 주로, 다른 시스템변수들을 구하는데 이용됨


3. 동적 방정식벡터 행렬 표현

  ㅇ (일반식 표현) (비선형 시변 시스템)
     
[# \dot{\mathbf{x}}(t) = f(\mathbf{x}, u, t) #]
ㅇ (벡터 행렬 방정식 표현) 변수와 계수가 벡터행렬로 주어짐 (선형 시불변 시스템) - 단일입출력 (SISO) .
[# \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) #]
(상태방정식) .
[# y(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}u(t) #]
(출력방정식) - 다중입출력 (MINO) .
[# \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) #]
(상태방정식) .
[# \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) #]
(출력방정식) ※ 항목별 명칭 * ( n : 상태 수, m : 입력 수, p : 출력 수 ) - x : 상태 벡터 (n x 1 열 벡터) - {#\dot{\mathbf{x}}#} : 상태벡터미분, 시스템 상태변화율 - 계수행렬 . A : 시스템 행렬 (n x n 정방행렬) . B : 입력 행렬 (n x m) . C : 출력 행렬 (p x n) . D : 순방향 이득 행렬 (p x m) - y : 출력 벡터 (p x 1 열 벡터) - u : 입력 벡터 (m x 1 열 벡터) 4. 동적 방정식의 블록선도 5. 미분방정식,전달함수,상태방정식 등의 변환 표현 방법 例 ㅇ (미분방정식상태방정식 형태로 표현) ☞ `위상변수형 상태방정식` 참조 ㅇ (전달함수상태방정식 형태로 표현) : 유일하지 않고 수많은 방법이 있음 - 한편, 전달함수상태방정식(상태선도)로 표현하는 것을 분해라고 하며, - 이러한 분해의 종류로는, 직접 분해, 종속 분해, 병렬 분해가 있음 ㅇ (상태방정식 → 전달함수 형태로 표현) ☞ `상태방정식 → 전달함수 → 블록선도` 참조 6. 상태 방정식에서, 시간 응답을 구하는 방법 ※ ☞ 상태 천이 행렬 등 참조


[상태공간기법] 1. 상태 공간 기법 2. 상태공간기법 용어 3. 상태 변수 4. 상태 방정식 5. 상태 천이행렬
[상태공간 표현]

 
        최근수정     요약목록     참고문헌