Exact Differential Equation   완전 미분방정식

(2019-09-10)

완전미분형 미분방정식

1. 전미분 방정식 (Total Differential Equation)미분방정식 보다는, 다음과 같은 이변수 함수로부터 출발하면,
         
[# u(x,y) = C #]
... (1) ㅇ 위 함수전미분은,
[# \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = 0 #]
... (2) ㅇ 이 전미분을, 다음의 1계 미분방정식 형태로 바꿀 수 있음
[# \frac{d y}{d x} = - \frac{ {\partial u}/{\partial x} }{ {\partial u}/{\partial y} } = f(x,y) #]
... (3) ㅇ 이때, 다음과 같이 가정해보면,
[# \frac{\partial u}{\partial x} = M(x,y), \quad \frac{\partial u}{\partial y} = N(x,y) #]
... (4) ㅇ 다음과 같은 식 형태를, `완전 미분형` 이라고 함
[# \frac{d y}{d x} = - \frac{M(x,y)}{N(x,y)} = f(x,y) #]
... (5) ㅇ 위 식 (4)를 식 (2)에 대입하면, 전미분 미분방정식 형태를 갖음
[# M(x,y)dx + N(x,y)dy = 0 #]
... (6) 2. 완전 미분미분방정식 (Exact Differential Equation)전미분 방정식 형태인 위 식 (6)이, 다음 조건을 만족할 때, (완전 미분형이 되기 위한 조건)
[# \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \frac{\partial^2 u}{\partial x \partial y} #]
ㅇ 이러한 함수 u(x,y)가 존재하면, 이를 `완전 미분미분방정식`이라고 함
[# \partial u = ({\partial u}/{\partial x})dx + ({\partial u}/{\partial y})dy = M(x,y)dx + N(x,y)dy = 0 \\ \frac{d y}{d x} = - \frac{M(x,y)}{N(x,y)} = f(x,y) #]
3. 완전 미분미분방정식 형태의 例)
[# ㅇ \quad y' = - \, \frac{\sin y}{2y + x \cos y} \\ \quad\quad \Rightarrow \; M = \sin y, \; N = 2y + x\cos y, \\ \quad\quad \Rightarrow \; \frac{\partial M}{\partial y} = \cos y = \frac{\partial N}{\partial x} \quad {\small (조건 \; 만족)} \\ ㅇ \quad (x^3 + y e^{xy})dx + (y^3 + x e^{xy})dy = 0 \\ \quad\quad \Rightarrow \; M = x^3 + ye^{xy}, \; N = y^3 + xe^{xy}, \\ \quad\quad \Rightarrow \; \frac{\partial M}{\partial y} = (1+xy)e^{xy} = \frac{\partial N}{\partial x} \quad {\small (조건 \; 만족)} \\ ㅇ \quad u(x,y) = x^2y \\ \quad\quad \Rightarrow \; \frac{\partial}{\partial y} \left( \frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left( \frac{\partial u}{\partial y} \right) = 2x \quad {\small (조건 \; 만족)} #]
4. 완전 미분방정식의 풀이 ㅇ 어떤 함수 u(x,y)가, 완전 미분미분방정식 형태를 갖으면, - 이 미분방정식의 해는, u(x,y) = C의 해가 됨 ㅇ 결국, 이 식의 적분 상수 C의 역도함수를 찾으면, 완전 미분방정식 형태의 일반해는,
[# u(x,y) = \int_x M(x,y)dx + h_1(y) = \int_y N(x,y)dy + h_2(x) = C #]
- 한편, 이 같은 일반해는, 음함수 형태를 갖음을 유의


[1계 미분방정식] 1. 1계 미분방정식 2. 변수 분리형 3. 동차형 4. 완전 미분형 5. 선형 미분방정식
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
            1. 해석학
        1.   미분적분
        2.   벡터해석학
        3.   미분방정식
          1.   미분방정식 기초
          2.   초기값문제,경계값문제
          3.   1계 미분방정식
            1.   1. 1계 미분방정식
                2. 변수 분리형
                3. 동차형
                4. 완전 미분형
                5. 선형 미분방정식
          4.   2계(고계) 미분방정식
          5.   급수해법
          6.   편미분방정식
          7.   특수함수
      4.   대수학
      5.   확률/통계
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공업일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌