Probability, Axiom of Probability   확률, 확률 공리

(2019-05-09)

주관적 확률

1. 확률 (Probability)

  ㅇ 어떤 사건이 일어날 가능성의 측도(measure,측량 단위) => 수(數)로써 나타낸 것
     - 상대적 비율로써 표현될 수 있음
        . 즉, 어떤 현상이 일어날 가능성을 측정,표현코자하는 측도(measure)로 삼고자한
              것이 바로 확률 임


2. 확률의 종류

  ㅇ 이론적 확률 (수학적 확률)
     - 누구라도 동일한 값으로 계산되는 엄밀한 확률        : 수학적으로 정의됨

     * 집합론수학공리에 기반을 둠 (☞ 아래 3.항 참조)

  ㅇ 객관적 확률 (통계적 확률 / 상대빈도 확률)
     - 동일조건/독립적으로 몇번 반복하였을 때의 발생 확률 : 도수 이론(frequency theory)

     * 반복된 실험에 기초한 상대 빈도 발생에 기반을 둠
     * `대수의 법칙` => 시행이 많아질수록 `통계적 확률`은 `수학적 확률`에 가까워짐

  ㅇ 주관적 확률
     - 관찰자의 주관적 믿음/확신으로써 표현되는 확률      : 주관적 견해(subjective view)

     * `베이즈 확률` => 모집단을 미리 확정짓지 않고, 모수를 마치 확률변수 처럼 취급


3. 확률 공리 (공리적 확률) (Axiom of Probability)

  ㅇ 오랫동안 경험적으로 쌓아온 확률현상에 대한 경험적 인식을 바탕으로 이론화한 것
     - 어떤 사건의 확률을 계산하기 위한 규칙의 근거를 제시함

  ㅇ 수학적으로 확률은 다음의 3가지 공리로부터 출발한다.

     - 공리 1  (Non negativity, 양의 실수)
        . 임의의 사건 A에 대하여  1 > P(A) ≥ 0
     - 공리 2  (Normalization, 정규화)
        . P(S) = 1  (여기서, S 는 표본 전체의 집합,표본공간)
     - 공리 3  (Additivity, 가법성)
        . 상호배타적인 사건 A₁,A₂,A₃,...에 대하여,
        . P(A₁∪ A₂∪ A₃∪ ...) = P(A₁) + P(A₂) + P(A₃) + ...

     * 확률은 0 과 1 사이의 실수이다. (공리 1 및 2) 
     * 모든 상호배타적 사건의 합집합에 대한 확률은 개개 사건의 확률의 합이다. (공리 3)

  ※ 1933년 러시아 수학자 A. N. Kolmogorov(1903~1987)가 정형화시킴


4. 확률의 주요 용어/정리/법칙

  ※ ☞ 확률 용어/확률 정리/확률 법칙
     - 독립 사건, 종속 사건, 배반 사건, 결합 사건
     - 동시 확률, 조건부 확률, 주변 확률, 사전 확률, 사후 확률, 우도 
     - 확률의 가법 정리, 확률의 승법 정리
     - 대수의 법칙, 중심 극한 정리, 전체 확률 법칙 
     - 확률변수, 확률모형/확률분포, 확률함수(누적분포함수,확률질량함수,확률밀도함수) 등


[확률 이란?] 1. 확률 2. 확률 용어/정리/법칙 3. 전체 확률 법칙 4. 대수의 법칙 5. 중심극한의 정리 6. 자유도 7. 체비셰프 부등식

 
        최근수정     요약목록     참고문헌