Binomial Theorem, Multinomial Theorem   이항 정리, 이항 전개, 다항 정리, 다항 전개

(2019-11-08)

Binomial Coefficient, 이항 계수, Multinomial Coefficient, 다항 계수


1. 이항 정리 (Binomial Theorem)

  ㅇ 이항의 거듭제곱 (a + b)n을 전개하여 다항식을 구하는 정리
     

  ㅇ 이항 계수 (Binomial Coefficient)
     - 서로 다른 n개의 물건 중에서 k개를 뽑는 경우의 수와 같음   ☞ 조합(Combination) 참조
       
[# \binom{n}{k} = C(n,k) = {_nC_k} = \frac{P(n,k)}{P(k,k)} = \frac{n!}{(n-k)!k!} = \frac{n(n-1)\cdots(n-k+1)}{k!} #]
※ [참고] ☞ 이항분포 참조 2. 다항 정리 (Multinomial Theorem) ㅇ 다항의 거듭제곱을 전개하여 다항식을 구하는 정리 ㅇ 다항 계수 (Multinomial Coefficient) - n개의 물건 중에서 k개로 그룹지어 구분하는 경우의 수
[# \binom{n}{x_1,x_2,\cdots,x_k} = \frac{n!}{x_1! x_2! \cdots x_k!} #]
. 단, {# (x_1 + x_2 + \cdots + x_k = n) #}



Copyrightⓒ written by 차재복 (Cha Jae Bok)
"본 웹사이트 내 모든 저작물은 원출처를 밝히는 한 자유롭게 사용(상업화포함) 가능합니다"