행렬 종류

(2017-01-11)

Identity Matrix, 단위 행렬, 항등 행렬, Zero Matrix, 영 행렬

1. 행렬 종류

  ㅇ 각 행렬은 주로 그 성분들이 배치되는 모양으로 이름 붙여 지었으나,
     - 그 각각은 선형연립방정식 및 그 해(解)와 관련된 성질 및 특징을 함축하고 있음 


2. 주요 행렬정방 행렬/정사각형 행렬 (Square Matrix)
     - 같은 수의 행과 열을 갖는 행렬 (n x n 행렬)

       대각 행렬 (Diagonal Matrix)  : (정방행렬에서 만 정의됨)
     - 주대각선(principal diagonal) 원소들을 제외한 원소들이 모두 0 인 정방행렬

       삼각 행렬 (Triangular Matrix)  : (정방행렬에서 만 정의됨)
     - 주 대각선 위 또는 아래 성분 모두가 0 인 정방행렬

       단위 행렬(Unit Matrix), 항등 행렬(Identity Matrix)  : (정방행렬에서 만 정의됨)
     - 주 대각성분이 모두 1 이고, 그외 성분이 모두 0인 정방행렬 

       

     - n x n 단위 행렬 표기 : In 또는 Inxn 또는 I

     - 크로네커 델타에 의한 단위행렬 표기 : In = [δij]n
        . 크로네커 델타 함수   스칼라 행렬 (Scalar Matrix)
     - 주 대각성분이 모두 같은 원소로된 대각행렬

       


  ㅇ 영 행렬 (Zero Matrix)
     - 모든 원소가 0 인 행렬 (행렬 덧셈에서 항등원)
        . A + 0 = 0 + A = A계수행렬(Coefficient Matrix), 첨가 행렬(Augmented Matrix)

     전치 행렬 (Transpose Matrix)  : (정방행렬에서 만 정의됨)
     - A=(aij)의 모든 행과 열을 바꾸어준 행렬 AT=(aji)


  ㅇ 대칭 행렬(Symmetric Matrix), 반대칭 행렬(Skew Symmetric Matrix)
      : (정방행렬에서 만 정의됨)
     - 대칭 행렬 : AT = A인 n x n 정방행렬
     - 반대칭행렬 : AT = -A인 n x n 정방행렬

     역 행렬(Inverse Matrix)
     - A-1A = AA-1 = I를 만족하는 A-1
     - 또는, A B = I = B A를 만족하면, BA역행렬이라고 함


  ㅇ 직교 행렬 (Orthogonal Matrix)
     -  A-1 = AT, ATA = I 가 성립하는 n x n 정칙행렬 A


[행렬 종류]1. 행렬의 종류  2. 정방 행렬  3. 삼각 행렬  4. 전치 행렬  5. 대각 행렬  6. 직교 행렬  7. 대칭 행렬  8. 복소수 행렬  9. 계수 행렬  10. 역 행렬  11. 가역 행렬  12. 특이 행렬  13. 치환 행렬  
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
      1.   기초수학
      2.   집합,논리
      3.   정수론(수론)
      4.   해석학(미적분 등)
      5.   대수학
            1. 대수학
        1.   기초대수학
        2.   선형대수학
              1. 선형대수
          1.   벡터
          2.   행렬
                1. 행렬 이란?
                2. 가역행렬 정리
                3. 행렬 용어
            1.   행렬 연산
            2.   행렬 종류
              1.   1. 행렬의 종류
                  2. 정방 행렬
                  3. 삼각 행렬
                  4. 전치 행렬
                  5. 대각 행렬
                  6. 직교 행렬
                  7. 대칭 행렬
                  8. 복소수 행렬
                  9. 계수 행렬
                  10. 역 행렬
                  11. 가역 행렬
                  12. 특이 행렬
                  13. 치환 행렬
            3.   행렬식
            4.   행렬응용
          3.   벡터 공간
          4.   고유값문제
          5.   선형변환
          6.   직교성,대각화
          7.   선형대수 수치방법
        3.   추상대수학
      6.   확률/통계
      7.   수치해법
    2.   물리/화학
    3.   지구,천체 과학
    4.   생명과학
  3.   파동/광학/음향
  4.   방송/멀티미디어/정보이론
  5.   전자/전기/제어
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   기계/재료/공업일반
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     모바일웹     참고문헌