Vector Formula   벡터 공식

(2018-06-16)
1. 주요 벡터 공식/법칙경도 연산
     -  ∇(c U)  = c ∇U  (단, C는 상수)
     -  ∇(U + V) = ∇U + ∇V
     -  ∇(U V) = U (∇V) + V (∇U)
     -  ∇(U/V) = [V(∇U) - U(∇V)]/V2
     -  ∇Vn = n Vn-1 ∇V

  ㅇ 분배법칙
     - 벡터의 발산에서, 분배 법칙이 성립됨 
        .  ∇·(A + B) = ∇·A + ∇·B

     - 벡터의 회전에서, 분배 법칙이 성립됨
        .  ∇×(A + B) = ∇×A + ∇×B

  ㅇ ∇(A·B) = (A·∇)B + (B ·∇)A + A ×(∇×B) + B ×(∇×A)

  ㅇ ∇·(A × B) = B·(∇×A) - A·(∇×B)

  ㅇ ∇·(V A) = V ∇·A + A·∇V

  ㅇ 라플라시안
     - 라플라시안 연산자 : 기울기연산자(grad) 및 발산연산자(div)가 복합된 하나의 연산자 
        .  ∇·(∇V) = ∇2V

     - 벡터 라플라시안
        .  ∇×∇×A = ∇(∇·A) - ∇2A벡터 발산
     - 모든 벡터장회전(컬)에 대해 취해지는 발산은 항상 0
        .  ∇·(∇×A) = 0

  ㅇ 벡터 회전
     - 임의의 기울기 연산에 대해 취해지는 벡터 회전은 항상 0
        .  ∇×(∇V) = 0

     - 두 벡터외적의 회전
        .  ∇×(A × B) = A (∇·B) - B (∇·A) + (B·∇) A - (A·∇) B

     - 스칼라장벡터장과의 곱의 회전
        .  ∇×(V A) = ∇V×A + V(∇×A)

  ㅇ 삼중곱
     - 스칼라 삼중곱 (Scalar Triple Product)
        .  (A × BC = (C × AB = (B × CA = A·(B x C)
        .  A·(A x B) = 0

     - 벡터 삼중곱 (Vector Triple Product,Triple Cross Product)
        .  A × (B x C) = B (A·C) - C (A·B)
        .  (A × B) x C = - A (B·C) + B (A·C)
        .  (A × B) x C = - C x (A × B)


[벡터해석학] 1. 벡터 해석학 2. 벡터 함수 3. 벡터 함수 미분 4. 위치/속도/가속도 벡터 5. 원운동 벡터 표현 6. 주요 벡터공식
[장(場) 벡터연산] [적분 정리]
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
            1. 해석학
        1.   미분적분
        2.   벡터해석학
              1. 벡터 해석학
              2. 벡터 함수
              3. 벡터 함수 미분
              4. 위치/속도/가속도 벡터
              5. 원운동 벡터 표현
              6. 주요 벡터공식
          1.   장(場) 벡터연산
          2.   적분 정리
        3.   미분방정식
      4.   대수학
      5.   확률/통계
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공업일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록(시험중)     참고문헌