PDE   Partial Differential Equation   편 미분 방정식

(2017-03-23)
1. 편 미분방정식 (partial differential equation)

  ㅇ 미지 함수편 도함수를 포함하는 미분방정식 
     - 2 이상의 독립변수에 관한 편도함수를 포함하는 미분방정식

  ㅇ 물리적 모델화
     - 2 이상의 변수들에 종속되는 물리학적 문제의 수학적 모델링
        . 미지 함수해(解)가 2 이상의 종속변수에 종속적 임


2. 편 미분방정식 특징 및 일반적 풀이

  ㅇ 일반적으로 상미분방정식과 달리 편미분방정식에서는 일반해를 구할 수 없음
     - 특정조건(초기조건,경계조건)을 만족하는 특수해를 구하는 것이 응용에 더 중요함

  ㅇ 편 미분방정식의 일반적 풀이 : 변수분리법
     - 양 변 모두 x,y 각각 변수들 만으로 이루어지게 함으로써, 
       각 변수가 서로 독립적이므로 결국 상수로 대치하여 푸는 방법


3. 선형 편미분방정식 형태 및 분류종속변수 및 그 편도함수의 차수가 1

  ㅇ 선형 2계 편미분방정식 일반 형태
     

  ㅇ 형태 분류
     - B2 - 4AC > 0  :  쌍곡형(Hyperbolic)
        . 例)  파동방정식 :  c2 uxx - utt = 0
     - B2 - 4AC = 0  :  포물형(Parabolic)
        . 例)  열방정식, 확산방정식
     - B2 - 4AC < 0  :  타원형(Elliptic)
        . 例)  2차원 라플라스방정식, 퍼텐셜 문제


4. 주요 응용별 例)라플라스 방정식
      
     - 형태) Homogeneous, Elliptic

  ㅇ 포아송 방정식
      
     - 형태) Nonhomogeneous, Elliptic

  ㅇ 열전도 방정식 또는 확산 방정식
      
     - 형태) Parabolic

  ㅇ 파동 방정식
     - 시간 독립 파동 방정식 - 헬름홀츠 방정식
        
        . 형태) Hyperbolic

     - 시간 의존 파동 방정식
        

  ※ (위 방정식들의 특징)
     - 선형(Linear) 2계(Second order) 편미분방정식
     - 선형 연산자 형태 : L f = g 
        . L : 선형 연산자 
        . g : 원천(Source)
        . f : 미지의 스칼라 함수


[편미분방정식] 1. 편 미분방정식 2. 파동 방정식 3. 헬름홀츠방정식 4. 포아송,라플라스 방정식
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
      1.   기초수학
      2.   집합,논리
      3.   정수론(수론)
      4.   해석학(미적분 등)
            1. 해석학
        1.   미분적분
        2.   미분방정식
          1.   미분방정식 기초
          2.   초기값문제,경계값문제
          3.   1계 미분방정식
          4.   2계(고계) 미분방정식
          5.   급수해법
          6.   편미분방정식
            1.   1. 편 미분방정식
                2. 파동 방정식
                3. 헬름홀츠방정식
                4. 포아송,라플라스 방정식
          7.   특수함수
      5.   대수학
      6.   확률/통계
      7.   수치해법
    2.   물리/화학
    3.   지구,천체 과학
    4.   생명과학
  3.   파동/광학/음향
  4.   방송/멀티미디어/정보이론
  5.   전자/전기/제어
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   기계/재료/공업일반
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     참고문헌