Spline Interpolation, Piecewise Polynomial Interpolation   스플라인 보간법, 구간별 다항식 보간법

(2018-07-03)
1. 스플라인 보간법 (Spline Interpolation)

  ㅇ 전체 구간을 소구간별로 나누어 저차수의 다항식으로 매끄러운 함수를 구하는 방법
     - 구간별 다항식 보간법(Piecewise Polynomial Interpolation) 이라고도 함


2. 소구간 근사 다항식 구분선형 스플라인 (Linear Spline) : 구간적 선형 보간
     
 
  ㅇ 2차 스플라인 (Quadratic Spline)
     

  ㅇ 삼차 스플라인 (Cubic Spline)
     


3. 스플라인 보간법 특징

  ㅇ 국부적으로 급격히 변하는 함수의 거동에 우수한 근사를 제공
  ㅇ 낮은 차수의 다항식으로 제한됨


4. 스플라인 보간법 조건

  ㅇ n개 데이터점, (n-1)개 소구간, 각 소구간 i, 소구간별 스플라인 함수 si가 주어질 때,
     - 각 소구간에서 보간점이 정의될 수 있어야 함
        . yi = si(xi) (i=0,1,...,m)
     - 각 소구간에서 (n-1)차 연속 미분가능할 것
     - 각 소구간에서 n차 다항식으로 표현 가능


5. [참고사항]

  ㅇ 스플라인(Spline)
     - 기계 제도나 설계에서 유연한 곡선을 그리기위해 사용되는 각종 곡선자

  ㅇ 스플라인 함수
     - 각 소구간에서 근사 함수


[곡선적합 (근사)] 1. 곡선적합(Curve Fitting) 2. 보간법 3. 선형 보간법 4. 다항식 보간법 5. 스플라인 보간법 6. 최소자승법 7. 회귀분석
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
      4.   대수학
      5.   확률/통계
      6.   수치해법
            1. 수치 해석
            2. 천장,마루 함수
        1.   오차
        2.   근 찾기
        3.   곡선적합 (근사)
          1.   1. 곡선적합(Curve Fitting)
              2. 보간법
              3. 선형 보간법
              4. 다항식 보간법
              5. 스플라인 보간법
              6. 최소자승법
              7. 회귀분석
        4.   수치 미분/적분
        5.   수치 미분방정식
        6.   MATLAB
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
    6.   뇌과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공업일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록     참고문헌