Fourier Representaion, Fourier Transform   푸리에 표현, 푸리에 이론, 푸리에 변환, 푸리에 변환 이론

(2015-10-08)
1. 푸리에 표현 (Fourier Representaion)

  ㅇ 대부분의 신호직교성을 갖는 정현파 신호선형결합(합 또는 적분)으로 표현 가능
     - 신호주파수 성분들로(주파수함수로) 나타내는 것

  ※ Jean Baptiste Joseph Fourier (1768~1830)
     - 1822년 프랑스의 수학자 푸리에(Jean Baptiste Joseph Fourier)가 열전도 현상을
       정현파들로 구성되는 무한급수에 의하여 표현 해석하는 논문을 발표
        . 즉, 어떤 주기 신호도 사인 및 코사인 함수선형 결합으로 표현 가능하다고 주장함


2. 푸리에 변환 이론 = 주파수영역상에서 해석,표현,설계를 위한 변환 도구주파수 영역에서 신호 및 시스템을 해석,표현하는 대표적인 방법
     - 신호주파수 스펙트럼 신호로 변환함으로써 신호주파수 성질을 쉽게 해석 가능
        . 例) LTI시스템에서 시간영역상의 컨벌루션 계산이 주파수영역상에서는 단순 곱셈
              만으로 그 결과를 얻을 수 있음 등


3. 푸리에 변환의 시간-주파수 표현 관계

  ㅇ 푸리에 변환 표현 가능 신호
     - 표현 가능한 신호       ⇒ 복소 정현파 또는 복소 지수로써 주파수 표현을 가능케 함

  ㅇ 신호주기적/비주기적 이냐, 연속적/이산적 이냐에 따라 푸리에 표현 형태가 달라짐
     - 시간이 주기성 이면,    ⇒ 기본주파수의 정수배 만을 갖는 주파수 관계(고조파)를 갖음
        . 즉, 이산적인 주파수 스펙트럼
     - 시간이 비주기성 이면,  ⇒ 모든 주파수 성분이 가능 
        . 즉, 연속적인 주파수 스펙트럼
     - 시간이 이산적 이라면,  ⇒ 주파수가 주기성을 갖게됨
        . 즉, 주기성을 갖는 주파수 스펙트럼
     - 시간이 연속적 이라면,  ⇒ 주파수가 주기성을 갖지 않음
        . 즉, 비주기적인 주파수 스펙트럼

     * ☞ 푸리에변환의 시간영역 및 주파수영역 관계 참조


4. 시간 신호의 푸리에 변환에 대한 여러 표현 형태

  ㅇ 연속시간 주기 신호 => CTFS (연속시간 푸리에급수)
     - 연속 주기 신호에 대해 고조파 복소지수항으로 무한 푸리에 급수 표현
       
        .      : 연속시간 주기 신호 (무한개 이산 주파수 성분들의 일차결합)
        . ck       : 이산 주파수 스펙트럼을 나타내는 푸리에 계수

  ㅇ 연속시간 비주기 신호 => CTFT (연속시간 푸리에변환)
     - 연속 비주기 신호에 대해 복소지수항으로 전체 주파수에 걸친 푸리에 적분 표현
       
        . x(t)   : 연속시간 비주기 신호 (무한히 연속된 주파수 스펙트럼으로 구성)
        . X(jω) : 연속 주파수 스펙트럼을 나타내는 푸리에 계수 (kωo→ω)

  ㅇ 이산시간 주기 신호 => DTFS (이산시간 푸리에급수)
     - 주기 수열에 대해 N개의 유한 푸리에 급수 표현
       
        .  : 이산시간 주기 수열 신호 (최대 N개의 주파수 성분들 만의 일차결합)
        .  : N개 이산 주파수 주기성을 갖는 복소수 이산 수열이산시간 비주기 신호 => DTFT (이산시간 푸리에변환)
     - 비주기 수열에 대해 주파수 구간 2π에 걸친 푸리에 적분 표현
       
        . x[n] : 이산시간 비주기 무한 수열 신호
        .  : 연속 주파수 주기성을 갖는 복소수 연속 함수

  ※ 위 4개의 변환 관계는 변환 수치 값을 항상 주지 못함
     - 즉, 닫힌 형태(closed-form)의 해석적수학적 표현으로 제한됨
        . 따라서, 실제 수치 변환 값을 합리적인 근사값으로 구하기 위해서는
                  `이산푸리에변환(DFT)`을 이용하게됨


5. 컴퓨터 계산이 가능케한 푸리에변환 표현

  ㅇ N개 시간 샘플 수열 => DFT (이산 푸리에 변환)
     - N개 유한 시간 샘플 수열에 대해, N개 유한 주파수 샘플 계수를 대응시킴 
        . 컴퓨터에 의한 실제 계산 수행이 가능토록 하기 위함        .
       


6. 푸리에 변환의 존재를 위한 충분조건 

  ㅇ 푸리에 변환은 모든 신호에 대해 주파수 영역 함수수렴시켜 표현 가능하지 않음.
     * ☞ 디리클레 조건(Dirichlet Condition) 참조


[푸리에 변환 이론] 1. 푸리에 표현 2. 시간 주파수 관계
[푸리에변환 표현 종류] [푸리에 급수] [푸리에 변환 성질] [푸리에변환(기타일반)]
  1.   기술공통
  2.   기초과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
        1. 전기전자공학
    1.   디지털공학
    2.   신호 및 시스템
      1.   신호 표현/성질
      2.   시스템 표현/성질
      3.   신호처리 기초
      4.   연산 소자
      5.   이산 신호/이산 시스템
      6.   변환 해석
            1. 변환 이란?
            2. 주파수 영역
            3. 복소 주파수 영역
        1.   변환 종류
        2.   푸리에 변환 이론
              1. 푸리에 표현
              2. 시간 주파수 관계
          1.   푸리에변환 표현 종류
          2.   푸리에 급수
          3.   푸리에 변환 성질
          4.   푸리에변환(기타일반)
      7.   필터
      8.   고속 신호 회로 해석
    3.   회로해석
    4.   전자기학
    5.   초고주파공학
    6.   반도체
    7.   전자회로
    8.   전기공학
    9.   자동제어
    10.   전자공학(기타일반)
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공업일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록(시험중)     참고문헌