Directional Derivative   방향 도함수, 방향 미분계수

(2018-01-05)
1. 방향 도함수/미분계수 (Directional Derivative)다변수 함수에서 방향에 따른 변화율을 계산할 수 있게 해주는 편도함수의 일종
     - 어떤 점에서 임의 방향으로 다변수 함수순간 변화율 계산에 편리한 수단


2. 방향 도함수기울기 벡터

  ㅇ 점 (x,y)에서 단위 벡터 u = (u1,u2) 방향으로의 방향 도함수는,
     -  Du f(x,y) = fx(x,y) u1 + fy(x,y) u2 
                  = ∂f(x,y)/∂x u1 + ∂f(x,y)/∂y u2 
                  = ∇f(x,y)·u

        . Du f : 다변수 함수 f의 방향 도함수
           .. 임의 방향 u에 대한 다변수 함수 f의 방향 도함수(순간 변화율)
        . fx,fy : 편도함수
           .. x,y 축방향으로의 편도함수는 일반화된 방향도함수의 특별한 경우 임
        . ∇f(x,y) : 기울기 벡터 (∇ : 경도 연산자)
           .. 함수의 각 점 마다 최대 변화율을 지향하는 벡터
        . u : 단위 벡터
           .. 방향 도함수의 계산을 특정 방향으로 구하고자 할 때, 그 방향의 단위 벡터

  ㅇ 의미 
     - 벡터 u 위에 기울기 벡터 ∇f를 정사영 시킨 것이,
     - u 방향으로의 함수 f의 변화율(방향도함수)와 같음

          


[다변수함수 미분] 1. 전 미분 2. 편 미분 3. 방향 도함수 4. 등위 선/면
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
          1. 수학
      1.   기초수학
      2.   집합,논리
      3.   해석학(미적분 등)
            1. 해석학
        1.   미분적분
              1. 미분적분학
          1.   함수
          2.   극한,연속,발산
          3.   미분
                1. 미분
                2. 도함수
                3. 해석적
                4. 미분가능
                5. 기울기
                6. 변화율
            1.   미분 공식/정리/법칙
            2.   다변수함수 미분
              1.   1. 전 미분
                  2. 편 미분
                  3. 방향 도함수
                  4. 등위 선/면
          4.   적분
          5.   직선,곡선,곡면
          6.   최적화
        2.   벡터해석학
        3.   미분방정식
      4.   대수학
      5.   확률/통계
      6.   수치해법
    2.   물리
    3.   화학
    4.   지구,천체 과학
    5.   생명과학
  3.   진동/파동
  4.   방송/멀티미디어/정보이론
  5.   전기전자공학
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   공업일반(기계,재료등)
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     요약목록(시험중)     참고문헌