경계값문제 해의 존재성 및 유일성

(2016-09-04)

Uniqueness Theorem

1. 경계값문제 해의 성질

  ㅇ 일반적으로, 2계 미분방정식초기값문제는,
     - 계수함수 p2(x),p1(x),p0(x)가 연속이고 p2(x)≠0이면, 유일한 해를 갖게됨

  ㅇ 그러나, 경계값문제는,
     - 미분방정식경계조건이 조금만 변해도, 그 해의 성질이 크게 달라짐 


2. 경계값 문제에서 해의 존재성(Existence)과 유일성(Uniqueness)경계값 문제에서 해의 존재성과 유일성
     - 초기값 문제와 달리 미분방정식에 부과된 조건이 구간의 `두 점 이상`에 주어지면,
     - 경계값 문제의 해는,
        . 존재하지 않거나,
        . 유일하거나,
        . 무한히 많은 해를 갖음

  ㅇ 유일성 정리 (Uniqueness Theorem)
     - 어떤 방법으로 풀든지간에 `선형 미분방정식`의 일반 풀이에서,
     - `경계조건`이 주어지면 이를 만족하게되는 해(解)는 반드시 하나뿐임 즉, `유일`함


[초기값문제,경계값문제] 1. 초기값 문제 2. (초기값문제) 해의 존재성,유일성 3. 경계값 문제 4. (경계값문제) 해의 존재성,유일성
  1.   기술공통
  2.   기초과학
        1. 과학
    1.   수학
      1.   기초수학
      2.   집합,논리
      3.   정수론(수론)
      4.   해석학(미적분 등)
            1. 해석학
        1.   미분적분
        2.   미분방정식
          1.   미분방정식 기초
          2.   초기값문제,경계값문제
            1.   1. 초기값 문제
                2. (초기값문제) 해의 존재성,유일성
                3. 경계값 문제
                4. (경계값문제) 해의 존재성,유일성
          3.   1계 미분방정식
          4.   2계(고계) 미분방정식
          5.   급수해법
          6.   편미분방정식
          7.   특수함수
      5.   대수학
      6.   확률/통계
      7.   수치해법
    2.   물리/화학
    3.   지구,천체 과학
    4.   생명과학
  3.   파동/광학/음향
  4.   방송/멀티미디어/정보이론
  5.   전자/전기/제어
  6.   통신/네트워킹
  7.   정보기술(IT)
  8.   기계/재료/공업일반
  9.   표준/계측/품질
  10.   기술경영

 
        최근수정     참고문헌