Joint Probability, Joint Probability Distribution, Joint Moment, Joint Statistic   결합 확률, 결합 확률분포, 결합 확률함수, 결합 모멘트, 결합 통계량

(2017-04-20)

동시 사건, 동시 확률

기초과학 1. 과학

수학
물리/화학
지구,천체 과학
생명과학
 > 수학기초수학
집합,논리
정수론(수론)
해석학(미적분 등)
대수학
확률/통계
수치해법
 > 확률/통계확률(기초일반)
확률공간
통계량
확률 모형,분포
확률 변수
확률 과정
통계학
 > 확률 변수 1. 확률 변수

확률변수의 함수,합
이변량 랜덤변수
다중 랜덤변수(다차원 분포)
 > 이변량 랜덤변수 1. 이변량 랜덤변수
2. 결합 확률/분포/모멘트
3. 결합 누적분포함수
4. 결합 확률질량함수
5. 결합 확률밀도함수
6. 주변 확률
7. 조건 확률

     
1. 2 이상의 확률적 사건을 동시에 고려하는 확률/통계적 표현들결합 사건 / 동시 사건 (Joint Events)
     - 동시에 함께 고려하는 여러 확률적 사건들

  ㅇ 결합 확률 / 동시 확률 (Joint Probability)
     - 2 이상의 사건이 모두 일어날 확률  즉, 동시에 일어날 확률

  ㅇ 결합 확률분포 (Joint Probability Distribution)
     - 이변량 확률분포 (Bivariate Distribution)    : 2개의 확률 변수들을 함께 고려
     - 다변량 확률분포 (Multivariate Distribution) : 2 이상의 확률 변수들을 함께 고려

  ㅇ 결합 확률함수 (Joint Probability Function)
     - 결합 확률함수로 나타낸 것
        . 결합 누적분포함수, 결합 확률질량함수, 결합 확률밀도함수

  ※ 결합된 사건에 대한 다른 표현 방법들
     - (변량 간의 관계)
        . 산포도(Scatter Diagram)
           .. 두 변량 간의 관계를 그림으로 나타냄
        . 공분산(Covariance), 상관계수(Correlation Coefficient)
           .. 두 변량 간의 관계의 정도 
     - (분포에 기초한 일반화)
        . 결합 모멘트 (Joint Moment)
           .. 결합 확률분포에 의해 일반화시킨 통계량 표현


2. 결합 확률 (Joint Probability)

  ㅇ 2 이상의 사건이 모두 일어날 확률  즉, 동시에 일어날 확률
     
     - 만일, 위 확률이 서로 독립이라면, => P(A,B) = P(A)ㆍP(B)
     - 그렇지 않으면, => P(A,B) = P(A|B) P(A)  (여기서, P(A|B)는 조건부확률)

  ㅇ 결합확률밀도함수에 의한 결합확률 표현
     


3. 결합 통계량 (Joint Statistic)다변량 확률변수로 결합된 함수기대값
     

  ㅇ 원점 결합 모멘트
      

     - 결합 모멘트 차수(order) : n + k
        . 例) m11 : 2차, m10 : 1차 등

  ㅇ 1차 원점 결합 모멘트
     
     - X,Y 각각의 기대값
     - 함수 fX,Y(x,y)의 무게 중심 좌표를 나타냄

  ㅇ 2차 원점 결합 모멘트 m11 = 상호상관(Cross-correlation) RXY
     
  
  ㅇ X,Y 간에 상관관계 없을 때
     
     - 만일, X,Y가 통계적독립이면, 그들간에 상관관계 없음
     - 그러나, 그 역은 항상 성립 않함


[ 이변량 랜덤변수 ]1. 이변량 랜덤변수  2. 결합 확률/분포/모멘트  3. 결합 누적분포함수  4. 결합 확률질량함수  5. 결합 확률밀도함수  6. 주변 확률  7. 조건 확률  

 
        최근수정     모바일웹     참고문헌