Vector Operation, Vector Addition   벡터 연산, 벡터 덧셈, 벡터 합, 벡터 곱셈

(2017-05-04)

삼중곱, 삼중적

1. 벡터 덧셈

  ㅇ 두 벡터의 덧셈 (Vector Addition)
     벡터 덧셈에 대해 성립되는 법칙                            ☞ 벡터공간 공리 참조
     - 교환법칙 : A + B = B + A
     - 결합법칙 : (A + B) + C = A + (B + C)
     - 벡터 덧셈의 항등원이 존재함 : A + 0 = A
     - 벡터 덧셈의 역원이 존재함 : A + (-A) = 0


2. 벡터 곱벡터스칼라의 곱셈(Scalar Multiplication,스칼라 배)
     - 벡터(Vector)에 스칼라를 곱하는 것.  例) kv

     - 스칼라 곱셈에 대해 성립하는 법칙
        . 결합법칙 : (ab)v = a(bv)
        . 분배법칙 : (a+b)v = av + bv, a(v + w) = av + aw
        . 스칼라곱셈항등원이 존재함 : 1 v = v

  ㅇ 두 벡터의 곱셈
     - 내적 (Inner Product)
        . 임의 두 벡터로부터 스칼라 값(길이,거리 등)을 생성해내는 연산

     - 외적 (Outer Product)
        . 임의 두 벡터로부터 또다른 벡터량을 생성해내는 연산

     - 직접곱 (텐서)
        . 스칼라, 벡터를 일반화시킨 것 (좌표계에 무관한 독립성을 부여)

  ㅇ 세 벡터의 곱셈 (Triple Product) 
     - 스칼라 삼중곱/삼중적 (Scalar Triple Product)
        
        . 스칼라 삼중곱/삼중적의 크기(절대값)은 평행 육면체의 부피
           
           .. |A x B| : 평행사변형의 넓이
           .. |C| cosθ : 평행 육면체의 높이
           .. θ : A x BC의 사잇각

     - 벡터 삼중곱/삼중적 (Vector Triple Product,Triple Cross Product)
        


[벡터-기초]1. 벡터  2. 스칼라  3. 벡터 상등  4. 벡터 연산  5. 벡터 종류  6. 정규화,단위 벡터  7. 좌표 벡터  8. 방향 여현  

 
        최근수정     모바일웹     참고문헌