Series   급수, 수열의 합

(2020-02-03)

시그마 델타, Summation Notation, 급수 표기, 합 표기

1. 급수 (Series) 이란?

  ㅇ [수학]
     - 순서화수열의 합
     - 부분합 수열극한

  ㅇ [신호처리]
     - 주어진 신호를 다른 신호들의 가중 합으로 나타낸 것


2. 급수의 유용성

  ㅇ (계산,해석 등에 응용)  다양한 수,함수를 수많은 항들의 합으로 표현하여 계산,해석에 활용함

  ㅇ (수의 급수 표현)  순환 소수, π, e 의 표현 등에 이용됨
       
[# 2.3171717 \cdots = 2.3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots = \frac{1147}{495} \\ \pi = 3 + \frac{1}{10} + \frac{4}{10^2} + \frac{1}{10^3} + \frac{5}{10^4} + \cdots #]
ㅇ (함수의 급수 표현) - 함수를 급수 형태로 표현 . 例)
[# \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum^{\infty}_{n=0} \frac{(-1)^n x^{2n}}{(2n)!} #]
- 함수의 급수 형태에서 각 항 계수들을 그 도함수와 관련시켜 근사 표현 ☞ 테일러 급수 참조 - 보다 복잡한 함수(초월함수 등)를 간단한 함수(초등함수)의 급수로 표현 가능 (즉, 근사화) ㅇ (미분방정식 풀이) ☞ 급수 해법 참조 ㅇ (기타) - 적분의 계산, 푸리에급수에서의 이용, 여러 특수함수(르장드르 함수,베셀 함수 등)의 분석 등 3. 급수의 표기 기호 ㅇ 시그마(Sigma) : `합`을 의미 - 그리스 문자 중 18번째 대(소) 문자 : {# \Sigma \; (\sigma) #}
[# a_1 + a_2 + a_3 + \cdots + a_n = \sum^{n}_{k=1} a_k #]
. 또는,
[# \sum_{1 \leq k \leq n} a_k #]
,
[# \sum_{p(k)} a_k #]
(단, p(k)는 k에 대한 성질) ㅇ 한편, 델타(Delta)는, `차`를 의미 - 그리스 문자 중 4번째 대(소) 문자 : {# \Delta \; (\delta) #} 4. 급수의 성질선형성 - 결합법칙 :
[# \sum^{n}_{k=1} (a_k \pm b_k) = \sum^{n}_{k=1} a_k \pm \sum^{n}_{k=1} b_k #]
- 분배법칙(스칼라곱셈) :
[# \sum^{n}_{k=1} c a_k = c \sum^{n}_{k=1} a_k #]
(c : 상수) ㅇ 상수의 급수 :
[# \sum^{n}_{k=1} 1 = n \; , \quad \sum^{n}_{k=1} c = c n #]
ㅇ 기타 성질
[# \sum^{n}_{k=1} a_kb_k \ne \sum^{n}_{k=1} a_k \sum^{n}_{k=1} b_k \\ \sum^{n}_{k=1} \frac{a_k}{b_k} \ne \frac{\sum^{n}_{k=1} a_k}{\sum^{n}_{k=1} b_k} #]
5. [참고사항] ㅇ 급수의 구분 ☞ 급수 종류 참조 - 등차 급수, 등비 급수, 기하 급수, 조화 급수, 교대 급수 등 ㅇ 급수의 공식 ☞ 급수 공식 참조 ㅇ 각 항들이 변수 x의 거듭제곱 형태로 된 무한급수멱급수 참조


[급수] 1. 급수 2. 급수 공식 3. 급수 수렴 4. 급수 종류 5. 멱 급수 6. 멱급수 공식 7. 삼각 급수 8. 테일러 급수 9. 푸리에 급수

 
        최근수정     요약목록     참고문헌