1. 브리지 회로
  ㅇ 4개 변(arm,암)을 갖는 정사각형 평형 회로
     - 계측,센서 등 각종 응용 회로에 활용
        ..  例) 센서 회로, 정류 회로 등
  ㅇ 영위법 사용
     - 측정량과 같은 크기로 조정(평형)된 기준량으로부터 측정하는 방법으로, 정밀 측정에 적합
2. 브리지 회로의 구분
  ㅇ dc 브리지 회로
     * (주로 저항 측정에 사용되며, 직류 전압 또는 전류를 사용하여 회로의 평형을 맞춤)
     - Wheatstone Bridge Circuit
     - Kelvin Bridge Circuit
     - Double Kelvin Bridge Circuit 등
  ㅇ ac 브리지 회로
     * (인덕턴스, 정전용량, 임피던스와 같은 교류 회로 요소들을 측정하는 데 사용)
     - Wheatstone Bridge Circuit
     - (인덕턴스 측정용)
        . Maxwell Bridge
           .. 기지의 정전용량으로 미지의 인덕턴스를 측정하는 등
        . Hay's Bridge
        . Owen's Bridge
        . Heaviside Bridge
     - (정전용량 측정용)
        . De Sauty's Bridge
        . Schering Bridge
        . Wien Bridge Circuit  ☞ Wien Bridge Oscillator 참조
3. 휘스톤 브리지 회로 (Wheatstone Bridge)
  ㅇ 역사
     - 1833년 S.H.Christie에 의해 처음으로 고안(제안)
     - 1843년 Charles Wheatstone 경에 의해, `정밀 저항 측정용 회로`로 개선 발명, 널리 알려짐
  ㅇ 구조 및 특징
     - 에너지 공급원(전압원,전류원)에서 에너지를 공급하며,
        . 4개 변에 비교용 임피던스 소자들을 갖고, 가운데에 전압 또는 전류 검출기를 갖는 형태
     - 통상, 가운데 검출기(검류계)의 지시값이 0(zero) 평형을 나타낼 때,
        . 기지의 3개 임피던스 소자들로부터 나머지 1개의 미지의 임피던스를 측정하게 됨
  ㅇ 직류 브리지 회로 (dc bridge)
     
     - 각 변(arm)의 저항을 조정하여,
        . 검출기 D의 전류를 0 이 되도록 하면,
           .. I1 = I3, I2 = I4
        . 점 c,d의 전위가 같아짐 
           .. R1I1 = R2I2, R3I3 = R4I4
     - 결국, R1R4 = R2R3
        . `마주보는 두 저항끼리의 곱이 같아짐` 
        . 이를, (휘스톤 브리지 회로 평형 조건) 이라고 칭함
     - 측정용 구성
        . R4 = (R2/R1)R3
           .. (R2/R1) : 비례변(ratio arm) = 1, 10, 100 등
           .. R3 : 평형변,표준변(standard arm) - 직독 지시
           .. R4 : 측정 대상(미지 저항)
     - 응용 
        . 저항 측정, 저항형 스트레인 게이지, 저항 온도계, 서미스터 등
  ㅇ 교류 브리지 회로 (ac bridge)
     
     - 측정 방법
        . 미지의 량을 기지의 표준 소자 값과 비교 (비교 측정)
     - 검출기 (D) : 통상, 수화기 사용
     - 평형 조건 : 
        . 임피던스 : Z1Z4 = Z2Z3
        . 복소수 표현 (Z = Z∠θ)
           .. 크기 : Z1Z4 = Z2Z3
           .. 위상각 : ∠θ1 + ∠θ4 = ∠θ2 + ∠θ3
     - 응용
        . 저주파 임피던스 측정
        . 자기 인덕턴스, 상호 인덕턴스, 정전용량 등을 측정
4. 캘빈 브리지 (또는 캘빈 더블 브리지)
  ㅇ 저 저항 측정용
  ㅇ 휘스톤 브리지에서 접촉 저항 및 리드 선 저항과 같은 영향을 감소시킴