1. 펄스 (Pulse) 이란?
  ㅇ 펄스 (Pulse)
     - 짧은 시간 동안 만 존재하는 일련의 파동(전기 흐름,진동 현상 등)
  ㅇ 펄스 파형 (Pulse Wave)
     - 일반적으로, 여러 모양(계단함수파,지수함수파,램프함수파,삼각파 등)을 갖지만, 
        . 보통은, 단 하나의 골과 마루를 갖는 파형을 주로 칭함
     - 다만, 통상적인 전기적인 펄스 파형으로는,
        . 임의 레벨로 수직 상승하였다가 상승한 레벨을 일정 시간 유지하다가,
        . 다시 하위 레벨로 수직 하강하는 직사각 파형을 주로 말함
2. 구형파 (矩形波,square wave) 또는 직사각파 (直四角波,rectangular wave), 사각 펄스파
  ㅇ 시간 영역에서 직사각형 모양을 하는 신호 파형
      
    
   ㅇ 표기 :  크기 A, 펄스폭 τ 이면  =>  A ∏(t/τ) 또는 A Rect(t/τ)
  ㅇ 명칭 : 통상, 주기적으로 반복하는 경우에,
     - 반복 구형파는, 시간간격이 규칙적인 것을 지칭하고, 
     - 반복 직사각파는, 시간간격이 일정하지 않은 것을 지칭
 
3. 펄스파의 주파수 영역(푸리에변환) 표현
  ㅇ 주파수 영역 상에서, 정현파의 기본파 및 모든 기수 고조파가 합해진 형태이며,
  ㅇ 이는, Sinc 함수의 모양을 나타냄
     - 즉, 고조파 차수가 높아질수록,
     - 진폭은 점차 작아지며,
     - 균등 위상 차이가 나는 형태를 지님
  ㅇ 표기 :  크기 A, 펄스폭 τ 이면  =>  A ∏(t/τ) 또는 A Rect(t/τ)
  ㅇ 명칭 : 통상, 주기적으로 반복하는 경우에,
     - 반복 구형파는, 시간간격이 규칙적인 것을 지칭하고, 
     - 반복 직사각파는, 시간간격이 일정하지 않은 것을 지칭
 
3. 펄스파의 주파수 영역(푸리에변환) 표현
  ㅇ 주파수 영역 상에서, 정현파의 기본파 및 모든 기수 고조파가 합해진 형태이며,
  ㅇ 이는, Sinc 함수의 모양을 나타냄
     - 즉, 고조파 차수가 높아질수록,
     - 진폭은 점차 작아지며,
     - 균등 위상 차이가 나는 형태를 지님
    [# \Pi \left(\frac{t}{τ}\right) = \text{rect} \left(\frac{t}{τ}\right)
           = u\left(t+\frac{τ}{2}\right) - u\left(t-\frac{τ}{2}\right)
           \;\; \leftrightarrow \;\; τ\;\text{sinc}(πτf) = τ\;\frac{\sin{(πτf)}}{πτf} #]
     4. [참고사항] 
  ㅇ (변조)  펄스파에 의한 변조 ☞ 펄스 변조
     - 주기적인 펄스를 정보 신호에 의해 변조하는 방식
  ㅇ (발생)  펄스 파형의 발생   ☞ 펄스 파형 발생기(비안정 멀티바이브레이터)
     - 펄스파 열(Pulse Train)의 발생, 일련의 펄스파 발생
  ㅇ (부호화)  2진 비트 열(列)과 전기적인 펄스 신호가 직접 대응되는 부호화 ☞ 선로 부호
  ㅇ (레이더)  ☞ 레이더 펄스 참조
4. [참고사항] 
  ㅇ (변조)  펄스파에 의한 변조 ☞ 펄스 변조
     - 주기적인 펄스를 정보 신호에 의해 변조하는 방식
  ㅇ (발생)  펄스 파형의 발생   ☞ 펄스 파형 발생기(비안정 멀티바이브레이터)
     - 펄스파 열(Pulse Train)의 발생, 일련의 펄스파 발생
  ㅇ (부호화)  2진 비트 열(列)과 전기적인 펄스 신호가 직접 대응되는 부호화 ☞ 선로 부호
  ㅇ (레이더)  ☞ 레이더 펄스 참조